

Machine Learning A. Supervised Learning A.2. Linear Classification

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

・ロト・日本・王王・王王・公会・

Outline

- 1. The Classification Problem
- 2. Logistic Regression
 - 2.1. Logistic Regression with Gradient Ascent
 - 2.2. Logistic Regression with Newton
- 3. Multi-category Targets
- 4. Linear Discriminant Analysis

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

シック・ 正正 《王》 《王》 《『

Outline

1. The Classification Problem

Logistic Regression 2.1. Logistic Regression with Gradient Ascent 2.2. Logistic Regression with Newton

- 3. Multi-category Targets
- 4. Linear Discriminant Analysis

・ 「 「 「 「 」 ・ 「 」 ・ 「 」 ・ 「 」 ・ (日 ・ (日 ・

Machine Learning 1. The Classification Problem

The Classification Problem

Example: classifying iris plants (Anderson 1935).

150 iris plants (50 of each species):

- species: setosa, versicolor, virginica
- length and width of sepals (in cm)
- length and width of petals (in cm)

iris setosa

iris versicolor

iris virginica

Shiversiter Hildeshein

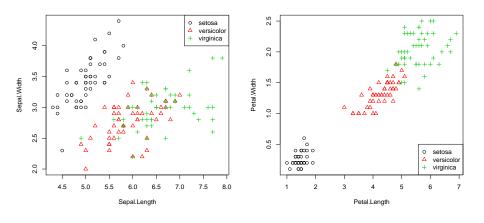
The Classification Problem

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.10	3.50	1.40	0.20	setosa
2	4.90	3.00	1.40	0.20	setosa
3	4.70	3.20	1.30	0.20	setosa
:	:	:	:	:	
51	7.00	3.20	4.70	1.40	versicolor
52	6.40	3.20	4.50	1.50	versicolor
53	6.90	3.10	4.90	1.50	versicolor
:	:	:	:	:	
101	6.30	3.30	6.00	2.50	virginica
÷	÷	÷	÷	÷	
150	5.90	3.00	5.10	1.80	virginica

・ロト < 団ト < 豆ト < 豆ト < 三日 < のへの

Universiter Tridesheim

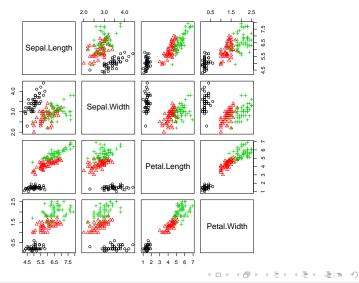
The Classification Problem



うとら 正則 《田》《田》《日》

Universiter - Hildesheim

The Classification Problem



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Binary Classification

Lets start simple and consider two classes only. Lets say our target Y is $\mathcal{Y}:=\{0,1\}.$ Given

► a set $\mathcal{D}^{\text{train}} := \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathbb{R}^M \times \mathcal{Y} \text{ called training data},$

we want to estimate a model $\hat{y}(x)$ s.t. for a set $\mathcal{D}^{\text{test}} \subseteq \mathbb{R}^{M} \times \mathcal{Y}$ called **test set** the **test error**

$$\mathsf{err}(\hat{y};\mathcal{D}^{\mathsf{test}}) := rac{1}{|D^{\mathsf{test}}|} \sum_{(x,y)\in\mathcal{D}^{\mathsf{test}}} I(y
eq \hat{y}(x))$$

is minimal.

Note: $\mathcal{D}^{\text{test}}$ has (i) to be from the same data generating process and (ii) not to be available during training.

Outline

1. The Classification Problem

- 2. Logistic Regression
 - 2.1. Logistic Regression with Gradient Ascent
 - 2.2. Logistic Regression with Newton
- 3. Multi-category Targets
- 4. Linear Discriminant Analysis

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Binary Classification with Linear Regression

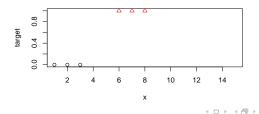
One idea could be to optimize the linear regression model

$$Y = \langle X, \beta \rangle + \epsilon$$

for RSS.

This has several problems

- It is not suited for predicting y as it can assume all kinds of intermediate values.
- It is a optimized for the wrong loss.



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

ヨト・モヨト

Shiversiter Stildesheim

Binary Classification with Linear Regression

Instead of predicting Y directly, we predict

 $p(Y = 1|X; \hat{\beta})$, the probability of Y being 1 knowing X.

But linear regression is also not suited for predicting probabilities, as its predicted values are principially unbounded.

Use a trick and transform the unbounded target by a function that forces it into the unit interval $\left[0,1\right]$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

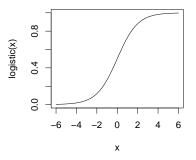
Logistic Function

Logistic function:

$$\operatorname{logistic}(x) := \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

The logistic function is a function that

- ▶ has values between 0 and 1,
- ► converges to 1 when approaching +∞,
- ► converges to 0 when approaching -∞,
- ► is smooth and symmetric at (0, 0.5).



伺下 イヨト イヨト

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

= = 900

Maximum Likelihood Estimator Logistic regression model:

$$p(Y = 1 | X; \hat{\beta}) = \text{logistic}(\langle X, \hat{\beta} \rangle) + \epsilon = \frac{e^{\sum_{i=1}^{n} \beta_i X_i}}{1 + e^{\sum_{i=1}^{n} \hat{\beta}_i X_i}} + \epsilon$$

As fit criterium, the likelihood is used.

As Y is binary, it has a Bernoulli distribution:

$$Y|X = \text{Bernoulli}(p(Y = 1 | X))$$

Thus, the conditional likelihood function is:

$$L_{D}^{\text{cond}}(\hat{\beta}) = \prod_{i=1}^{n} p(Y = y_i | X = x_i; \hat{\beta})$$

=
$$\prod_{i=1}^{n} p(Y = 1 | X = x_i; \hat{\beta})^{y_i} (1 - p(Y = 1 | X = x_i; \hat{\beta}))^{1-y_i}$$

Machine Learning 2. Logistic Regression

Estimating Model Parameters

The last step is to estimate the model parameter $\hat{\beta}$.

This will be done by maximizing the conditional likelihood function $L_{\mathcal{D}}^{\text{cond}}$ which is in this case equivalent to maximizing the log likelihood $log(L_{\mathcal{D}}^{\text{cond}})$.

This can be done with any optimization technique, we will have a closer look at

- Gradient Ascent
- Newton

シック 비로 《로》《로》《唱》《日》

Juniversiter Hildeshein

Gradient Ascent

1: procedure

MAXIMIZE-GA $(f : \mathbb{R}^N \to \mathbb{R}, x_0 \in \mathbb{R}^N, \alpha, t_{\max} \in \mathbb{N}, \epsilon \in \mathbb{R}^+)$ 2: for $t = 1, ..., t_{\max}$ do 3: $x^{(t)} := x^{(t-1)} + \alpha \cdot \frac{\partial f}{\partial x}(x^{(t-1)})$ 4: if $f(x^{(t)}) - f(x^{(t-1)}) < \epsilon$ then 5: return $x^{(t)}$ 6: error "not converged in t_{\max} iterations"

For maximizing function f instead of minimizing it go into the positive direction of the gradient.

《日》《圖》《王》《王》 관日 今への

Gradient Ascent for the Loglikelihood

$$\begin{split} \log \mathcal{L}_{\mathcal{D}}^{\text{cond}}(\hat{\beta}) &= \sum_{i=1}^{n} y_{i} \log p_{i} + (1 - y_{i}) \log(1 - p_{i}) \\ &= \sum_{i=1}^{n} y_{i} \log(\frac{e^{\langle x_{i}, \hat{\beta} \rangle}}{1 + e^{\langle x_{i}, \hat{\beta} \rangle}}) + (1 - y_{i}) \log(1 - \frac{e^{\langle x_{i}, \hat{\beta} \rangle}}{1 + e^{\langle x_{i}, \hat{\beta} \rangle}}) \\ &= \sum_{i=1}^{n} y_{i}(\langle x_{i}, \hat{\beta} \rangle - \log(1 + e^{\langle x_{i}, \hat{\beta} \rangle})) + (1 - y_{i}) \log(\frac{1}{1 + e^{\langle x_{i}, \hat{\beta} \rangle}}) \\ &= \sum_{i=1}^{n} y_{i}(\langle x_{i}, \hat{\beta} \rangle - \log(1 + e^{\langle x_{i}, \hat{\beta} \rangle})) + (1 - y_{i})(-\log(1 + e^{\langle x_{i}, \hat{\beta} \rangle})) \\ &= \sum_{i=1}^{n} y_{i}\langle x_{i}, \hat{\beta} \rangle - \log(1 + e^{\langle x_{i}, \hat{\beta} \rangle}) \end{split}$$

Gradient Ascent for the Loglikelihood

$$\log \mathcal{L}_{\mathcal{D}}^{\text{cond}}(\hat{\beta}) = \sum_{i=1}^{n} y_{i} \langle x_{i}, \hat{\beta} \rangle - \log(1 + e^{\langle x_{i}, \hat{\beta} \rangle})$$

$$\frac{\partial \log \mathcal{L}_{\mathcal{D}}^{\text{cond}}(\hat{\beta})}{\partial \hat{\beta}} = \sum_{i=1}^{n} y_{i} x_{i} - \frac{1}{1 + e^{\langle x_{i}, \hat{\beta} \rangle}} e^{\langle x_{i}, \hat{\beta} \rangle} x_{i}$$

$$= \sum_{i=1}^{n} x_{i} (y_{i} - p(Y = 1 | X = x_{i}; \hat{\beta}))$$

$$= \mathbf{X}^{T} (\mathbf{y} - \mathbf{p})$$

$$\mathbf{p} := \begin{pmatrix} p(Y = 1 | X = x_{1}; \hat{\beta}) \\ \vdots \\ p(Y = 1 | X = x_{n}; \hat{\beta}) \end{pmatrix}$$

Gradient Ascent for the Loglikelihood

1: procedure LOG-REGR-
GA(
$$\mathcal{L}_{\mathcal{D}}^{\text{cond}}$$
 : $\mathbb{R}^{P+1} \to \mathbb{R}$, $\hat{\beta}^{(0)} \in \mathbb{R}^{P+1}$, α , $t_{\text{max}} \in \mathbb{N}$, $\epsilon \in \mathbb{R}^+$
2: for $t = 1, \dots, t_{\text{max}}$ do
3: $\hat{\beta}^{(t)} := \hat{\beta}^{(t-1)} + \alpha \cdot X^T(y - p)$
4: if $\mathcal{L}_{\mathcal{D}}^{\text{cond}}(\hat{\beta}^{(t-1)}) - \mathcal{L}_{\mathcal{D}}^{\text{cond}}(\hat{\beta}^{(t)})) < \epsilon$ then
5: return $\hat{\beta}^{(t)}$

6: **error** "not converged in t_{max} iterations"

うせん 正則 スポッスポッスポッスロッ

Newton Algorithm Given a function $f : \mathbb{R}^p \to \mathbb{R}$, find x with minimal f(x).

The Newton algorithm is based on a quadratic Taylor expansion of f around x_n :

$$F_n(x) := f(x_n) + \langle \frac{\partial f}{\partial x}(x_n), x - x_n \rangle + \frac{1}{2} \langle x - x_n, \frac{\partial^2 f}{\partial x \partial x^T}(x_n)(x - x_n) \rangle$$

and minimizes this approximation in each step, i.e.,

$$\frac{\partial F_n}{\partial x}(x_{n+1}) \stackrel{!}{=} 0$$

with

$$\frac{\partial F_n}{\partial x}(x) = \frac{\partial f}{\partial x}(x_n) + \frac{\partial^2 f}{\partial x \partial x^T}(x_n)(x - x_n)$$

which leads to the Newton algorithm:

$$\frac{\partial^2 f}{\partial x \partial x^T}(x_n)(x_{n+1} - x_n) = -\frac{\partial f}{\partial x}(x_n)$$

Newton Algorithm

《日》《聞》《言》《言》 三世 釣べの

Newton Algorithm

Universite

1: procedure

 $\text{MINIMIZE-NEWTON}(f:\mathbb{R}^N \to \mathbb{R}, x^{(0)} \in \mathbb{R}^N, \alpha, t_{\max} \in \mathbb{N}, \epsilon \in \mathbb{R}^+)$

2: **for**
$$t = 1, ..., t_{max}$$
 do

3:
$$x^{(t)} := x^{(t-1)} - \alpha H^{-1} \nabla_x f$$

4: **if**
$$f(x^{(t-1)}) - f(x^{(t)}) < \epsilon$$
 then

5: return
$$x^{(t)}$$

6: **error** "not converged in t_{max} iterations"

 $\begin{array}{l} x^{(0)} \mbox{ start value} \\ \alpha \mbox{ (fixed) step length / learning rate} \\ t_{max} \mbox{ maximal number of iterations} \\ \epsilon \mbox{ minimum stepwise improvement} \\ H \in \mathbb{R}^{N \times N} \mbox{ Hessian matrix, } H_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j} \\ \nabla_x f \in \mathbb{R}^N \mbox{ } (\nabla_x f)_i = \frac{\partial}{\partial x_i} f \end{array}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton Algorithm for the Loglikelihood

$$\frac{\partial \log L_{\mathcal{D}}^{\text{cond}}(\hat{\beta})}{\partial \hat{\beta}} = \mathbf{X}^{T} (\mathbf{y} - \mathbf{p})$$
$$\frac{\partial^{2} \log L_{\mathcal{D}}^{\text{cond}}(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}^{T}} = \mathbf{X}^{T} \mathbf{W} \mathbf{X}$$

with

$$W := diag\left(\langle p, 1 - p \rangle\right)$$

and $p_i := P(Y = 1 | X = x_i; \hat{\beta}).$

Update rule for the Logistic Regression with Newton optimization:

$$\hat{\beta}^{(t)} := \hat{\beta}^{(t-1)} + \alpha (X^T W X)^{-1} X^T (y - p)$$

(日) (日) (日) (日) (日) (日) (日) (日)

Newton Algorithm for the Loglikelihood

$$\begin{array}{cccc} \underline{x1 \quad x2 \quad y} \\ \hline 1 & 1 & + \\ 3 & 2 & + \\ 2 & 2 & - \\ 0 & 3 & - \end{array} \mathbf{X} := \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \\ 1 & 0 & 3 \end{pmatrix}, \ \mathbf{y} := \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ \hat{\beta}^{(0)} := \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \ \alpha = 1$$

$$p^{(0)} = \begin{pmatrix} 0.5\\ 0.5\\ 0.5\\ 0.5 \end{pmatrix}, \quad W^{(0)} = diag \begin{pmatrix} 0.25\\ 0.25\\ 0.25\\ 0.25 \end{pmatrix}, \quad X^{T}(y-p) = \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix}$$
$$\left(X^{T}W^{(0)}X\right)^{-1} = \begin{pmatrix} 14.55 & -2.22 & -5.11\\ -2.22 & 0.88 & 0.44\\ -5.11 & 0.44 & 2.22 \end{pmatrix}, \quad \hat{\beta}^{(1)} = \begin{pmatrix} 2.88\\ 0.44\\ -1.77 \end{pmatrix}$$

To visualize a logistic regression model, we can plot the decision boundary

$$\hat{p}(Y=1\,|\,X)=\frac{1}{2}$$

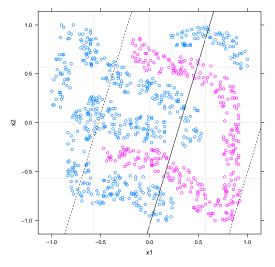
and more detailed some level lines

$$\hat{p}(Y=1\,|\,X)=p_0$$

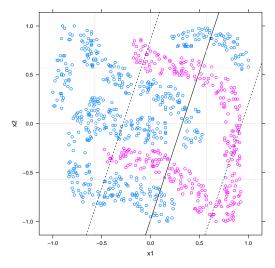
e.g., for $p_0 = 0.25$ and $p_0 = 0.75$:

$$\langle \hat{eta}, X
angle = \log(rac{p_0}{1-p_0})$$

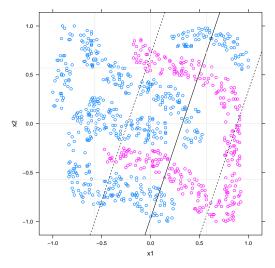
シック 비린 《비사 《川 》 《臣》 《日》



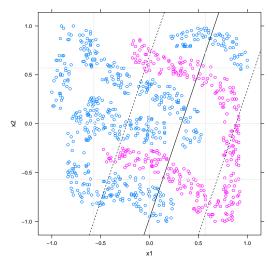
シック 正則 スポッスポッス ロッ



シック 正則 《田》《田》《田》《日》



シック 正則 スポッスポッス ロッ



うんら 川川 イル・イル・イロト

Outline

- 1. The Classification Problem
- Logistic Regression
 2.1. Logistic Regression with Gradient Ascent
 2.2. Logistic Regression with Newton
- 3. Multi-category Targets
- 4. Linear Discriminant Analysis

《日》《聞》《問》《問》《問》《曰》

Machine Learning 3. Multi-category Targets

Binary vs. Multi-category Targets

Binary Targets / Binary Classification: prediction of a nominal target variable with 2 levels/values.

Example: spam vs. non-spam.

Multi-category Targets / Multi-class Targets / Polychotomous Classification: prediction of a nominal target variable with more than 2 levels/values.

Example: three iris species; 10 digits; 26 letters etc.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Compound vs. Monolithic Classifiers

Compound models

- built from binary submodels,
- different types of compound models employ different sets of submodels:
 - ► 1-vs-rest (aka 1-vs-all)
 - 1-vs-last
 - ► 1-vs-1 (Dietterich and Bakiri 1995; aka pairwise classification)
 - ► DAG
- using error-correcting codes to combine component models.
- ► also ensembles of compound models are used (Frank and Kramer 2004).

Monolithic models (aka "'one machine"' (Rifkin and Klautau 2004))

Types of Compound Models

1-vs-rest: one binary classifier per class:

$$\begin{aligned} f_y : X \to [0,1], \quad y \in Y \\ f(x) &:= \big(\frac{f_1(x)}{\sum_{y \in Y} f_y(x)}, \dots, \frac{f_k(x)}{\sum_{y \in Y} f_y(x)}\big) \end{aligned}$$

1-vs-last: one binary classifier per class (but last y_k):

$$f_{y}: X \to [0,1], \quad y \in Y, y \neq y_{k}$$

$$f(x) := (\frac{f_{1}(x)}{1 + \sum_{y \in Y} f_{y}(x)}, \dots, \frac{f_{k-1}(x)}{1 + \sum_{y \in Y} f_{y}(x)}, \frac{1}{1 + \sum_{y \in Y} f_{y}(x)})$$

シック 비밀 《피》《티》《曰》《曰》

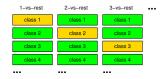
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 44

Machine Learning 3. Multi-category Targets

Polychotomous Discrimination, k target categories

1-vs-rest construction:



k classifiers trained on N cases

kN cases in total

1-vs-last construction:

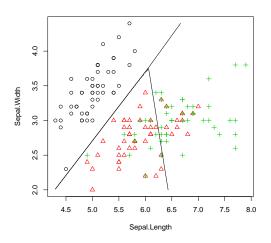
k-1 classifiers trained on approx. 2 N/k on average.

 $N + (k-2)N_k$ cases in total

シック 비로 《로》《토》《唱》《日》

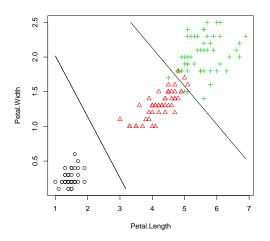
Shiversiter Hideshein

Example / Iris data / Logistic Regression



(* □) * (=) * (

Example / Iris data / Logistic Regression



Outline

- 1. The Classification Problem
- Logistic Regression
 Logistic Regression with Gradient Ascent
 Logistic Regression with Newton
- 3. Multi-category Targets
- 4. Linear Discriminant Analysis

・日・《四・《四・《四・《日・

Assumptions

In discriminant analysis, it is assumed that

 \blacktriangleright cases of a each class k are generated according to some probabilities

$$\pi_k = p(Y = k)$$

and

i.e.

 its predictor variables are generated by a class-specific multivariate normal distribution

$$X|Y = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$
$$p_k(x) := \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_k|^{\frac{1}{2}}} e^{-\frac{1}{2}\langle x - \mu_k, \Sigma_k^{-1}(x - \mu_k)}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 44

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

Decision Rule

Discriminant analysis predicts as follows:

$$\hat{Y}|X = x := rg\max_k \pi_k p_k(x) = rg\max_k \delta_k(x)$$

with the discriminant functions

$$\delta_k(x) := -\frac{1}{2} \log |\Sigma_k| - \frac{1}{2} \langle x - \mu_k, \Sigma_k^{-1}(x - \mu_k) \rangle + \log \pi_k$$

Here,

$$\langle x - \mu_k, \Sigma_k^{-1}(x - \mu_k) \rangle$$

is called the Mahalanobis distance of x and μ_k .

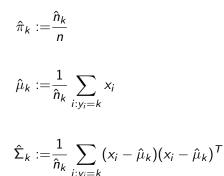
Thus, discriminant analysis can be described as prototype method, where

- each class k is represented by a prototype μ_k and

Maximum Likelihood Parameter Estimates

The maximum likelihood parameter estimates are as follows:

$$\hat{n}_k := \sum_{i=1}^n I(y_i = k), \quad \text{with } I(x = y) := \left\{ egin{array}{c} 1, & ext{if } x = y \\ 0, & ext{else} \end{array}
ight.$$



うとの 正則 《川下》《川下》《日》

QDA vs. LDA

In the general case, decision boundaries are quadratic due to the quadratic occurrence of x in the Mahalanobis distance. This is called **quadratic discriminant analysis (QDA)**.

If we assume that all classes share the same covariance matrix, i.e.,

$$\Sigma_k = \Sigma_{k'} \quad \forall k, k'$$

then this quadratic term is canceled and the decision boundaries become linear. This model is called **linear discriminant analysis (LDA)**.

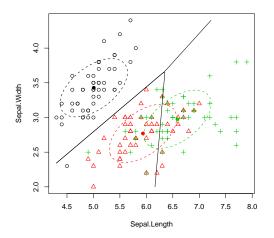
The maximum likelihood estimator for the common covariance matrix in LDA is

$$\hat{\Sigma} := \sum_{k} \frac{\hat{n}_{k}}{n} \hat{\Sigma}_{k}$$

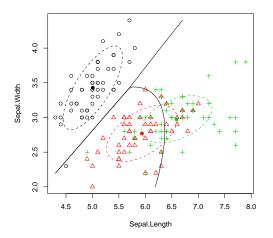
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

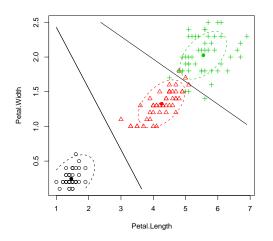
Example / Iris data / LDA



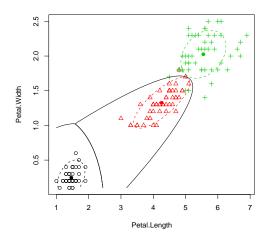
Example / Iris data / QDA



Example / Iris data / LDA



Example / Iris data / QDA



シック 正則 スポッスポッスロッ

LDA coordinates

The variance matrix estimated by LDA can be used to linearly transform the data s.t. the Mahalanobis distance

$$\langle x, \hat{\Sigma}^{-1} y \rangle = x^T \hat{\Sigma}^{-1} y$$

becomes the standard Euclidean distance in the transformed coordinates

$$\langle x', y' \rangle = x^T y$$

This is accomplished by decomposing $\hat{\Sigma}$ as

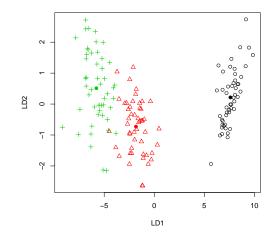
$$\hat{\Sigma} = U D U^T$$

with an orthonormal matrix U (i.e., $U^T = U^{-1}$) and a diagonal matrix D and setting

$$x' := D^{-\frac{1}{2}} U^T x$$

シック 비로 《로》《토》《句》《曰》

Example / Iris data / LDA coordinates



LDA vs. Logistic Regression

LDA and logistic regression use the same underlying linear model.

For LDA:

$$\begin{split} \log(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}) \\ = & \log(\frac{\pi_1}{\pi_0}) - \frac{1}{2} \langle \mu_0 + \mu_1, \Sigma^{-1}(\mu_1 - \mu_0) \rangle + \langle x, \Sigma^{-1}(\mu_1 - \mu_0) \rangle \\ = & \alpha_0 + \langle \alpha, x \rangle \end{split}$$

For logistic regression by definition we have:

$$\log(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}) = \beta_0 + \langle \beta, x \rangle$$

シック 三回 スポッスポッス モッ

LDA vs. Logistic Regression

Both models differ in the way they estimate the parameters.

LDA maximizes the complete likelihood:

$$\prod_{i} p(x_i, y_i) = \prod_{i} p(x_i | y_i) \qquad \prod_{i} p(y_i)$$

normal p_k bernoulli π_k

While logistic regression maximizes the conditional likelihood only:

$$\prod_{i} p(x_i, y_i) = \underbrace{\prod_{i} p(y_i | x_i)}_{\text{logistic}} \underbrace{\prod_{i} f(x_i)}_{\text{ignored}}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Summary

- For classification, logistic regression models of type Y = ^{e⟨X,β⟩}/_{1+e⟨X,β⟩} + ε can be used to predict a binary Y based on several (quantitative) X.
- ► The maximum likelihood estimates (MLE) can be computed using Gradient Ascent or Newton's algorithm on the loglikelihood.
- Another simple classification model is linear discriminant analysis
 (LDA) that assumes that the cases of each class have been generated by a multivariate normal distribution with class-specific means μ_k (the class prototype) and a common covariance matrix Σ.
- ► The maximum likelihood parameter estimates π̂_k, μ̂_k, Σ̂ for LDA are just the sample estimates.
- Logistic regression and LDA share the same underlying linear model, but logistic regression optimizes the conditional likelihood, LDA the complete likelihood.

うせん 正則 スポッスポッス型 くう

Sniversite

Further Readings

► [JWHT13, chapter 3], [Mur12, chapter 7], [HTFF05, chapter 3].

References

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction, volume 27. 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An introduction to statistical learning. Springer, 2013.

Kevin P. Murphy.

Machine learning: a probabilistic perspective. The MIT Press, 2012.