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Machine Learning 1. The Problem of Overfitting

Fitting of models
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Machine Learning 1. The Problem of Overfitting

Underfitting/Overfitting

Underfitting: The model is not complex enough to explain the data
well.This results in poor predictive performance.

Overfitting: The model is too complex, it describes the noise instead of
the underlying relationship between the variables. Similarly to underfitting,
this results in poor predictive performance.

Remark: Given n points (xi , yi ) without repeated measurements (i.e.
xi 6= xj , i 6= j), a polynomial of degree n − 1 exists such that the RSS
equals 0.
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Machine Learning 2. Model Selection

Model Selection Measures
Model selection means: we have a set of models, e.g.,

Y =

p−1∑
i=0

βiXi

indexed by p (i.e., one model for each value of p), make a choice which
model describes the data best.
If we just look at losses / fit measures such as RSS, then

the larger p, the better the fit

or equivalently

the larger p, the lower the loss

as the model with p parameters can be reparametrized in a model with
p′ > p parameters by setting

β′i =

{
βi , for i ≤ p
0, for i > p
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Machine Learning 2. Model Selection

Model Selection Measures
One uses model selection measures of type

model selection measure = fit− complexity

or equivalently

model selection measure = loss + complexity

The smaller the loss (= lack of fit), the better the model.

The smaller the complexity, the simpler and thus better the model.

The model selection measure tries to find a trade-off between fit/loss and
complexity.
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Machine Learning 2. Model Selection

Model Selection Measures

Akaike Information Criterion (AIC): (maximize)

AIC := log L− p

or (minimize)

AIC := −2 log L + 2p = −2n log(RSS/n) + 2p

Bayes Information Criterion (BIC) /
Bayes-Schwarz Information Criterion: (maximize)

BIC := log L− p

2
log n
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Machine Learning 2. Model Selection

Variable Backward Selection
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Machine Learning 3. Regularization

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 23



Machine Learning 3. Regularization

Shrinkage

Model selection operates by

I fitting models for a set of models with varying complexity and then
picking the ”best one” ex post,

I omitting some parameters completely (i.e. forcing them to be 0).

Shrinkage follows a similar idea:

I smaller parameters mean a simpler hypothesis/less complex model.
Hence, small parameters should be prefered in general.

I a term is added to the model equation to penalize high parameters
instead of forcing them to be 0.
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Machine Learning 3. Regularization

Shrinkage

There are various types of shrinkage techniques for different application
domains.

L1/Lasso Regularization: λ
∑p

j=1

∣∣∣β̂j ∣∣∣ = λ
∥∥∥β̂∥∥∥

1

L2/Tikhonov Regularization: λ
∑p

j=1 β̂
2
j = λ

∥∥∥β̂∥∥∥2

2

Elastic Net: λ1

∥∥∥β̂∥∥∥
1

+ λ2

∥∥∥β̂∥∥∥2

2
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Machine Learning 3. Regularization

Ridge Regression

Ridge regression is a combination of

n∑
i=1

(yi − ŷi )
2

︸ ︷︷ ︸+λ

p∑
j=1

β2
j︸ ︷︷ ︸

= L2 loss +λ L2 regularization
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Machine Learning 3. Regularization

Ridge Regression (Closed Form)
Ridge regression: minimize

RSSλ(β̂) =RSS(β̂) + λ

p∑
j=1

β̂2
j = 〈y − Xβ̂, y − Xβ̂〉+ λ

p∑
j=1

β̂2
j

⇒ β̂ =

XTX + λ


0 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1



−1

XTy

with λ ≥ 0 a complexity parameter / regularization parameter.

As solutions of ridge regression are not equivariant under scaling of the
predictors, data is normalized before ridge regression:

x ′i ,j :=
xi ,j − x̄.,j
σ̂(x.,j)
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Machine Learning 3. Regularization

Ridge Regression (Gradient Descent)

1: procedure Ridge-Regr-
GD(ŷ : RP → R, β̂(0) ∈ RP+1, α, tmax ∈ N,X ∈ RN×P)

2: for t = 1, . . . , tmax do

3: β̂
(t)
0 := β̂

(t−1)
0 − α

(
2
∑N

i=1− (yi − ŷ (Xi ))
)

4: for j = 1, . . . ,P do

5: β̂
(t)
j := β̂

(t−1)
j − α

(
2
∑n

i=1−Xi ,j (yi − ŷ (Xi )) + 2λβ̂
(t−1)
j

)
6: if converged then
7: return β̂(t)

L2-Regularized Update Rule

β̂
(t)
j := (1− 2αλ)︸ ︷︷ ︸

shrinkage

β̂
(t−1)
j − α

(
2

n∑
i=1

−Xi ,j (yi − ŷ (Xi ))

)
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Machine Learning 3. Regularization

Tikhonov Regularization Derivation (1/2)
Treat the true parameters θj as random variables Θj with the following
distribution (prior):

Θj ∼ N (0, σΘ), j = 1, . . . , p

Then the joint likelihood of the data and the parameters is

LD,Θ(θ) :=

(
n∏

i=1

p(xi , yi | θ)

)
p∏

j=1

p(Θj = θj)

and the conditional joint log likelihood of the data and the parameters

log Lcond
D,Θ (θ) :=

(
n∑

i=1

log p(yi | xi , θ)

)
+

p∑
j=1

log p(Θj = θj)

and

log p(Θj = θj) = log
1√

2πσΘ

e
−

θ2
j

2σ2
Θ = − log(

√
2πσΘ)−

θ2
j

2σ2
Θ
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Machine Learning 3. Regularization

Tikhonov Regularization Derivation (2/2)
Dropping the terms that do not depend on θj yields:

log Lcond
D,Θ (θ) :=

(
n∑

i=1

log p(yi | xi , θ)

)
+

p∑
j=1

log p(Θj = θj)

∝

(
n∑

i=1

log p(yi | xi , θ)

)
− 1

2σ2
Θ

p∑
j=1

θ2
j

This also gives a semantics to the complexity / regularization parameter λ:

λ =
1

2σ2
Θ

but σ2
Θ is unknown. (We will see methods to estimate λ soon.)

The parameters θ that maximize the joint likelihood of the data and the
parameters are called Maximum Aposteriori Estimators (MAP
estimators).
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Machine Learning 3. Regularization

L2-Regularized Logistic Regression (Gradient Descent)

log Lcond
D (β̂) =

n∑
i=1

yi 〈xi , β̂〉 − log(1 + e〈xi ,β̂〉)−λ
P∑
j=1

β̂2
j

1: procedure Log-Regr-
GA(Lcond

D : RP+1 → R, β̂(0) ∈ RP+1, α, tmax ∈ N, ε ∈ R+)
2: for t = 1, . . . , tmax do

3: β̂
(t)
0 := β̂

(t−1)
0 + α

∑n
i=1

(
yi − p

(
Y = 1|X = xi ; β̂

(t−1)
))

4: for j = 1, . . . ,P do

5: β̂
(t)
j :=

β̂
(t−1)
j + α

∑n
i=1 xi ,j

(
yi − p

(
Y = 1|X = xi ; β̂

(t−1)
))
−2λβ̂

(t−1)
j

6: if Lcond
D (β̂(t−1))− Lcond

D (β̂(t))) < ε then
7: return β̂(t)

8: error ”not converged in tmax iterations”
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Machine Learning 3. Regularization

L2-Regularized Logistic Regression (Newton)
Newton update rule:

β̂(t) := β̂(t−1) + αH−1∇β̂p
(
Y = 1|X = xi ; β̂

(t−1)
)

pi = p
(
Y = 1|X = xi ; β̂

(t−1)
)

∇β̂L
cond
D =


∑n

i=1− (yi − pi )∑n
i=1−xi ,1 (yi − pi )−2λβ̂1

...∑n
i=1−xi ,P (yi − pi )−2λβ̂P



H =
n∑

i=1

−pi (1− pi ) xix
T
i −2λ


0 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


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Machine Learning 4. Hyperparameter Optimization
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Machine Learning 4. Hyperparameter Optimization

What is Hyperparameter Optimization?

Many learning algorithms Aλ have hyperparameters λ (learning rate,
regularization). After choosing them, Aλ can be used to map the training
data Dtrain to a function ŷ by minimizing some loss L(x ; ŷ).

Identifying good values for the hyperparameters λ is called
hyperparameter optimization.

Hence, hyperparameter optimization is a second order optimization

argminλ∈Λ
1

|Dcalib|
∑

x∈Dcalib

L (x ;Aλ (Dtrain)) = argminλ∈ΛΨ(λ)

where Ψ is the hyperparameter response function and Dcalib a
calibration set.
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Machine Learning 4. Hyperparameter Optimization

Why Hyperparameter Optimization

I So far only model parameters were optimized.

I Hyperparameters (such as learning rate α and regularization λ) were
omitted.

I Hyperparameters can have a big impact on the prediction quality.
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Machine Learning 4. Hyperparameter Optimization

Grid Search
I Choose for each hyperparameter a set of values Λ1, . . . ,Λq.
I Λ =

∏q
i=1 Λi is then the combination of all hyperparameters in all Λi s.

I Then choose the hyperparameter λ ∈ Λ with best performance on
Dcalib.
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Machine Learning 4. Hyperparameter Optimization

Random Search
I Instead of choosing hyperparameters on a grid, choose random

hyperparameters λ for Λ (within a reasonable space).
I Provides better results than grid search in cases of insensitive

hyperparameters.
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Machine Learning 4. Hyperparameter Optimization

What is the Calibration Data?

Whenever a learning process depends on a hyperparameter, the
hyperparameter can be estimated by picking the value with the lowest
error.

If this is done on test data, one actually uses test data in the training
process (“train on test”), thereby lessen its usefullness for estimating the
test error.

Therefore, one splits the training data again in

I (proper) training data and

I calibration data.

The calibration data figures as test data during the training process.
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Machine Learning 4. Hyperparameter Optimization

Cross Validation

Instead of a single split into

training data, (validation data,) and test data

cross validation splits the data in k parts (of roughly equal size)

D = D1 ∪ D2 ∪ · · · ∪ Dk , Di pairwise disjunct

and averages performance over k learning problems

D
(i)
train = D \ Di , D

(i)
test = Di i = 1, . . . , k

Common is 5- and 10-fold cross validation.

n-fold cross validation is also known as leave one out.
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Machine Learning 4. Hyperparameter Optimization

Cross Validation

How many folds to use in k-fold cross validation?

k = n / leave one out:

I approximately unbiased for the true prediction error.

I high variance as the n training sets are very similar.

I in general computationally costly as n different models
have to be learnt.

k = 5:

I lower variance.

I bias could be a problem,
due to smaller training set size the prediction error could
be overestimated.
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Machine Learning 4. Hyperparameter Optimization

Summary

I The problem of overfitting can be overcome by model selection or
shrinkage.

I Applying L2-Regularization for Linear and Logistic Regression needs
only few changes in the learning algorithm

I Estimating the best hyperparameters can be considered as a
meta-learning problem. They can be estimated e.g. by Grid Search
and Random Search.
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Machine Learning

Further Readings

I [JWHT13, chapter 3], [Mur12, chapter 7], [HTFF05, chapter 3].
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Machine Learning
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