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Machine Learning 1. The Problem of Overfitting

v

Fitting of models

Linear model (RSS= 11353.52) Quadratic model (RSS= 10824.72 ) Polynomial model (RSS= 7029.37 )
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Machine Learning 1. The Problem of Overfitting

NN
Underfitting /Overfitting “

Underfitting: The model is not complex enough to explain the data
well. This results in poor predictive performance.

Overfitting: The model is too complex, it describes the noise instead of
the underlying relationship between the variables. Similarly to underfitting,
this results in poor predictive performance.

Remark: Given n points (x;, y;) without repeated measurements (i.e.

Xi # Xj, i # j), a polynomial of degree n — 1 exists such that the RSS
equals 0.
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Machine Learning 2. Model Selection

. B2
Model Selection Measures “
Model selection means: we have a set of models, e.g.,
p—1
Y =Y BiX;
i=0

indexed by p (i.e., one model for each value of p), make a choice which
model describes the data best.

If we just look at losses / fit measures such as RSS, then
the larger p, the better the fit

or equivalently
the larger p, the lower the loss

as the model with p parameters can be reparametrized in a model with
p' > p parameters by setting

,8/_ Bia forlgp
"1 0, fori>p
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Machine Learning 2. Model Selection

. P2
Model Selection Measures v

One uses model selection measures of type

model selection measure = fit — complexity

or equivalently

model selection measure = loss 4+ complexity

The smaller the loss (= lack of fit), the better the model.
The smaller the complexity, the simpler and thus better the model.

The model selection measure tries to find a trade-off between fit/loss and
complexity.
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Machine Learning 2. Model Selection

Model Selection Measures
Akaike Information Criterion (AIC): (maximize)
AlIC:=loglL—p

or (minimize)

AIC := —2log L +2p = —2nlog(RSS/n) + 2p

Bayes Information Criterion (BIC) /
Bayes-Schwarz Information Criterion: (maximize)

BIC :=log L — glogn

[m] = = =
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Machine Learning 2. Model Selection

Variable Backward Selection

{A.F.H LLJLP}
AIC = 63.01

[m]

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2. Model Selection

Variable Backward Selection

{A,F.H LJLP}
AIC = 63.01
{(X.F.HILJLP}

AIC = AR R7

{AF,HX J, L, P}
AIC = A1 11

{AFHILJLK}
AIC =7017
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Machine Learning 2. Model Selection

Variable Backward Selection

{AF,HLJLP}
AIC = 63.01
{X.F.HLJLLP} «. {AFHXJLP}
AIC = 63.87

{AF,H1JLEK}
Wﬂm
{KFHXJLP}Y ... {AFKXJLP}
AIC = 61.88

vee {AF,HX J LK}
AIC =59.40 AIC =68.70
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Machine Learning 2. Model Selection

Variable Backward Selection

{AF,HLLJLP}

AIC = 63.01
{(KFHLJLLPY «. {AFHXJLP} {AF.H1LJLEK}
AIC = 63.87 AIC = 61.11 AIC =70.17
{(KEHXJLLPY . {AFXXJLLP} ... {AFRHXJLEK}
AIC = 61.88 AIC = 59.40 AIC = 68.70
{KFXXJLLPH {AXNXJLP}
AIC = 63.23 AIC = 61.50
X

{AF.UXJ LR}
AIC = 66.71
removed variable
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Machine Learning 3. Regularization

NN
Shrinkage “

Model selection operates by

» fitting models for a set of models with varying complexity and then
picking the " best one” ex post,

» omitting some parameters completely (i.e. forcing them to be 0).

Shrinkage follows a similar idea:

» smaller parameters mean a simpler hypothesis/less complex model.
Hence, small parameters should be prefered in general.

» a term is added to the model equation to penalize high parameters
instead of forcing them to be 0.
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Machine Learning 3. Regularization

Shrinkage

domains.

There are various types of shrinkage techniques for different application

L1/Lasso Regularization: A}~ ’BJ’ = HBHI
L2/Tikhonov Regularization: A} 2

P

R 12

8= 8],
R 12

Elastic Net: )\ Hﬁ”l + A2 H5H2
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Machine Learning 3. Regularization

Ridge Regression

Ridge regression is a combination of

n

S ,,

Yi— 9 A5
i—1 i1
S —

N——

= L2 loss

4+ L2 regularization
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Machine Learning 3. Regularization

Ridge Regression (Closed Form)

Ridge regression: minimize

RSSA(3) =RSS(3) + Zp: =(y— X3,y — XB) + Zp:
00 -~ 0\\"
= h=|xTxa| 0! X7y
0 o 1

with A > 0 a complexity parameter / regularization parameter.

As solutions of ridge regression are not equivariant under scaling of the

predictors, data is normalized before ridge regression:
ro_ Xig T Xy

59T T (x )
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Machine Learning 3. Regularization

Ridge Regression (Gradient Descent)

1: procedure RIDGE-REGR-
GD(y : RP 5 R, 30 e RPHL ) tax € N, X € RVXP)

2: for t =1,..., tmax do

s A=A e (28 - -5 (%)

4: forj=1,...,Pdo

5 B0 = B o (350, X i 5 06 + 205
6: if converged then

7: return 3(9)

L2-Regularized Update Rule

3 = (1 - 2a2)80 Y (22-)@,- (y; —y(x,-))>

shrinkage
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Machine Learning 3. Regularization

Tikhonov Regularization Derivation (1/2)

Treat the true parameters 6; as random variables ©; with the following
distribution (prior):

ejNN(O,O'@), J=1...,p
Then the joint likelihood of the data and the parameters is
n P
Lpe(0) = (H p(xi, i 9)) [Ir(e; =
i=1 j=1
and the conditional joint log likelihood of the data and the parameters

p
log LSS (6 (Z log p(yi | xi, 0 ) +) log p(0; = 0))
j=1

and
1 4 02
|Og p(ej = 91) — |og e 20%) — — |og(\/%0-®) _ 712

V2moe 204
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Machine Learning 3. Regularization

Tikhonov Regularization Derivation (2/2)
Dropping the terms that do not depend on 6; yields:

n P
log LSS () := <Z log p(yi | xi, 9)) +) _logp(©; = 6))
i=1 j=1
n 1 P
oS <Zlogp(yi\><i, )22
i=1 =1

This also gives a semantics to the complexity / regularization parameter A:

1
Aziz
204

but 03 is unknown. (We will see methods to estimate A soon.)

The parameters 6 that maximize the joint likelihood of the data and the
parameters are called Maximum Aposteriori Estimators (MAP
estimators).
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Machine Learning 3. Regularization

NN
L2-Regularized Logistic Regression (Gradient Descent) “

log L™ (3 Z yilxi, B) — log(1 + e®3)) )\ Z 32

1: procedure LOG—REGR—A
GA(LSM : RPF 5 R, B0 € RFFL @, tnax € N, e € RT)

2: for t =1,..., tmax do
3 B =BV +a T, (y,- —p (Y = 1[X=x; ﬂ(t*”))
4: forj=1,...,Pdo
5. B(t) —
(t Dy ady g Xij (y, —p (Y =1|X = x;; B(t_l))> —2/\31071)
6: if LB — [59Md(3(1))) < € then
7 return 3(t)
8: error "not converged in tpyax iterations”
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Machine Learning 3. Regularization

L2-Regularized Logistic Regression (Newton)

Newton update rule:

B = B0 ab 1 (¥ = 11X = s )

pi=p (¥ =1X=x;3)

> i1 — i — pi)
Z?l Xll( pl) 2)‘61

v Lcond
27 1 —Xi P( P:) 2)\613

0 O 0

‘ 0 1

H = Z_Pl (1= pi) xixj" —2A )

i=1 0

0 0 1
[m] [l = ==
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Machine Learning 4. Hyperparameter Optimization

What is Hyperparameter Optimization?

Many learning algorithms Ay have hyperparameters A (learning rate,
regularization). After choosing them, Ay can be used to map the training
data Dyain to a function § by minimizing some loss L(x; §).

Identifying good values for the hyperparameters \ is called
hyperparameter optimization.

Hence, hyperparameter optimization is a second order optimization

. 1 -
argminy | L (x; Ax (Drrain)) = argminycaW(A)

Dcalib|

X€ Dealib

where V is the hyperparameter response function and D, a
calibration set.
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Machine Learning 4. Hyperparameter Optimization

NN
Why Hyperparameter Optimization “

» So far only model parameters were optimized.

» Hyperparameters (such as learning rate « and regularization \) were
omitted.

» Hyperparameters can have a big impact on the prediction quality.

‘SVM Polynomial Response Surface ‘SVM Polynomial Response Surface

|
Accuracy |
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Machine Learning 4. Hyperparameter Optimization

Grid Search A

» Choose for each hyperparameter a set of values Aq,...,A,.

» A= H,q:1 A; is then the combination of all hyperparameters in all Ajs.

» Then choose the hyperparameter A € A with best performance on
Dcalib-

0.10
1

regularization

0.02
1

T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

learnina rate
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Machine Learning 4. Hyperparameter Optimization

Random Search

» Instead of choosing hyperparameters on a grid, choose random
hyperparameters A for A (within a reasonable space).

» Provides better results than grid search in cases of insensitive
hyperparameters.

0.8

0.6

regularization

0.2
1

0.0

T T T T T
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Machine Learning 4. Hyperparameter Optimization

NN
What is the Calibration Data? v

Whenever a learning process depends on a hyperparameter, the
hyperparameter can be estimated by picking the value with the lowest
error.

If this is done on test data, one actually uses test data in the training
process ( “train on test”), thereby lessen its usefullness for estimating the
test error.

Therefore, one splits the training data again in
» (proper) training data and
» calibration data.

The calibration data figures as test data during the training process.
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Machine Learning 4. Hyperparameter Optimization

Cross Validation

Instead of a single split into

training data, (validation data,) and test data

cross validation splits the data in k parts (of roughly equal size)
D=DyUDyU---UDy, D; pairwise disjunct
and averages performance over k learning problems
pl) —p\p, DI =D i=1,. .k
Common is 5- and 10-fold cross validation.

n-fold cross validation is also known as leave one out.
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Machine Learning 4. Hyperparameter Optimization

Cross Validation

How many folds to use in k-fold cross validation?

k = n / leave one out:

>

>

approximately unbiased for the true prediction error.
high variance as the n training sets are very similar.

in general computationally costly as n different models
have to be learnt.

lower variance.

bias could be a problem,
due to smaller training set size the prediction error could
be overestimated.
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Machine Learning 4. Hyperparameter Optimization

NN
Summary “

» The problem of overfitting can be overcome by model selection or
shrinkage.

» Applying L2-Regularization for Linear and Logistic Regression needs
only few changes in the learning algorithm

» Estimating the best hyperparameters can be considered as a
meta-learning problem. They can be estimated e.g. by Grid Search
and Random Search.
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Machine Learning

Further Readings

» [JWHT13, chapter 3], [Murl2, chapter 7], [HTFFO05, chapter 3].
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