

Machine Learning A. Supervised Learning A.5. Nearest-Neighbor Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

・ロト・(部ト・ミト・ミト 三日 のへぐ

Outline

1. Distance Measures

2. K-Nearest Neighbor Models

3. Scalable Nearest Neighbor

・日本・西本・古本・古本・古市 ふくら

Syllabus

Tue. 21.10.	(1)	0. Introduction					
		A. Supervised Learning					
Wed. 22.10.	(2)	A.1 Linear Regression					
Tue. 28.10.	(3)	A.2 Linear Classification					
Wed. 29.10.	(4)	A.3 Regularization					
Tue. 4.11.	(5)	A.4 High-dimensional Data					
Wed. 5.11.	(6)	A.5 Nearest-Neighbor Models					
Tue. 11.11.	(7)	A.6 Support Vector Machines					
Wed. 12.12.	(8)	A.7 Decision Trees					
Tue. 18.11.	(9)	A.8 A First Look at Bayesian and Markov Networks					
		B. Unsupervised Learning					
Wed. 19.11.	(10)	B.1 Clustering					
Tue. 25.11.	(11)	B.2 Dimensionality Reduction					
Wed. 26.11.	(12)	B.3 Frequent Pattern Mining					
		C. Reinforcement Learning					
Tue. 2.12.	(13)	C.1 State Space Models					
Wed. 3.12.	(14)	C.2 Markov Decision Processes					
		《日》《國》《王》《王》 관금 今今今					

Outline

1. Distance Measures

2. K-Nearest Neighbor Models

3. Scalable Nearest Neighbor

シック 正則 《川》 《川》 《日》 (四)

Motivation

▶ ...

So far, regression and classification methods covered in the lecture can be used for

- numerical variables,
- binary variables (re-interpreted as numerical), and
- nominal variables (coded as set of binary indicator variables).

Often one is also interested in more complex variables such as

- set-valued variables,
- sequence-valued variables (e.g., strings),

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Motivation

There are two kinds of approaches to deal with such variables:

feature extraction:

try to derive binary or numerical variables, then use standard methods on the feature vectors.

kernel methods:

try to establish a distance measure between two variables, then use methods that use only distances between objects (but no feature vectors).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

シック・ 正正 《王》 《王》 《『

Distance measures

Let d be a distance measure (also called metric) on a set \mathcal{X} , i.e.,

$$d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+_0$$

with

- 1. *d* is **positiv definite**: $d(x, y) \ge 0$ and $d(x, y) = 0 \Leftrightarrow x = y$
- 2. *d* is symmetric: d(x, y) = d(y, x)
- 3. *d* is **subadditive**: $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

(for all $x, y, z \in \mathcal{X}$.)

Example: **Euclidean metric** on $\mathcal{X} := \mathbb{R}^n$:

$$d(x,y) := (\sum_{i=1}^{n} (x_i - y_i)^2)^{\frac{1}{2}}$$

Minkowski Metric / L_p metric Minkowski Metric / L_p metric on $\mathcal{X} := \mathbb{R}^n$:

$$d(x,y) := \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

with $p \in \mathbb{R}, p \geq 1$.

p = 1 (taxicab distance; Manhattan distance):

$$d(x,y) := \sum_{i=1}^n |x_i - y_i|$$

p = 2 (euclidean distance):

$$d(x,y) := (\sum_{i=1}^{n} (x_i - y_i)^2)^{\frac{1}{2}}$$

 $p = \infty$ (maximum distance; Chebyshev distance):

$$d(x \ v) := \max_{n \in \mathbb{N}} |x| \to \sqrt{n} + (1 + 1)$$

Minkowski Metric / L_p metric / Example

Example:

$$x := \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \quad y := \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$$

$$d_{L_1}(x, y) = |1 - 2| + |3 - 4| + |4 - 1| = 1 + 1 + 3 = 5$$

$$d_{L_2}(x,y) = \sqrt{(1-2)^2 + (3-4)^2 + (4-1)^2} = \sqrt{1+1+9} = \sqrt{11} \approx 3.32$$

$$d_{L_{\infty}}(x,y) = \max\{|1-2|, |3-4|, |4-1|\} = \max\{1,1,3\} = 3$$

◇▷▷ 비로 《王》《王》 《国》 《□》

Similarity measures

Instead of a distance measure sometimes **similarity measures** are used, i.e.,

$$\mathsf{sim}:\mathcal{X} imes\mathcal{X} o\mathbb{R}^+_0$$

with

• sim is symmetric: sim(x, y) = sim(y, x).

Some similarity measures have stronger properties:

- sim is discerning: $sim(x, y) \le 1$ and $sim(x, y) = 1 \Leftrightarrow x = y$
- $sim(x,z) \ge sim(x,y) + sim(y,z) 1$.

Some similarity measures have values in [-1,1] or even $\mathbb R$ where negative values denote "dissimilarity".

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Distance vs. Similarity measures

A discerning similarity measure can be turned into a semi-metric (pos. def. & symmetric, but not necessarily subadditive) via

$$d(x,y) := 1 - \sin(x,y)$$

In the same way, a metric can be turned into a discerning similarity measure

(with values eventually in $] - \infty, 1]$).

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Cosine Similarity

The angle between two vectors in \mathbb{R}^n can be used as distance measure

$$d(x,y) := \operatorname{angle}(x,y) := \operatorname{arccos}(rac{\langle x,y
angle}{||x||_2 ||y||_2})$$

To avoid the arccos, often the cosine of the angle is used as similarity measure (cosine similarity):

$$sim(x, y) := cosangle(x, y) := \frac{\langle x, y \rangle}{||x||_2 ||y||_2}$$

Example:

$$x := \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \quad y := \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$$

$$\sin(x,y) = \frac{1 \cdot 2 + 3 \cdot 4 + 4 \cdot 1}{\sqrt{1 + 9 + 16}\sqrt{4 + 16 + 1}} = \frac{18}{\sqrt{26}\sqrt{21}} \approx 0.77$$

Distances for Nominal Variables

Shiversizer Stildeshein

For binary variables there is only one reasonable distance measure:

$$d(x,y) := 1 - I(x = y)$$
 with $I(x = y) := \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$

This coincides with the L_{∞} distance for the indicator/dummy variables.

The same distance measure is useful for nominal variables with more than two possible values.

For hierarchical variables, i.e., a nominal variable with levels arranged in a hierarchy, there are more advanced distance measures (not covered here).

Distances for Set-valued Variables

For set-valued variables (which values are subsets of a set A) the **Hamming distance** often is used:

$$d(x,y) := |(x \setminus y) \cup (y \setminus x)| = |\{a \in A \mid I(a \in x) \neq I(a \in y)\}|$$

(the number of elements contained in only one of the two sets).

Example:

$$d(\{a, e, p, l\}, \{a, b, n\}) = 5, \quad d(\{a, e, p, l\}, \{a, e, g, n, o, r\}) = 6$$

Also often used is the similarity measure Jaccard coefficient:

$$sim(x,y) := rac{|x \cap y|}{|x \cup y|}$$

Example:

$$sim(\{a, e, p, l\}, \{a, b, n\}) = \frac{1}{6}, \quad sim(\{a, e, p, l\}, \{a, e, g, n, o, r\}) = \frac{2}{8}$$

Distances for Strings / Sequences

edit distance / Levenshtein distance:

d(x, y) := minimal number of deletions, insertions or substitutions to transfor Examples:

> d(man, men) = 1d(house, spouse) = 2

d(order, express order) = 8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Distances for Strings / Sequences

The edit distance is computed recursively. With

$$x_{1:i} := (x_{i'})_{i'=1,...,i} = (x_1, x_2, ..., x_i), \quad i \in \mathbb{N}$$

we compute the number of operations to transform $x_{1:i}$ into $y_{1:j}$ as

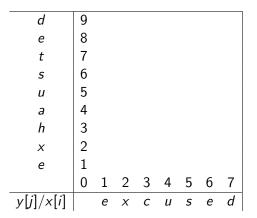
$$\begin{array}{ll} c(x_{1:i}, y_{1:j}) := \min \{ \begin{array}{ll} c(x_{1:i-1}, y_{1:j}) + 1, & // \text{ delet } x_i, x_{1:i-1} \rightsquigarrow y_{1:j} \\ c(x_{1:i}, y_{1:j-1}) + 1, & // x_{1:i} \rightsquigarrow y_{1:j-1}, \text{ insert } y_j \\ c(x_{1:i-1}, y_{1:j-1}) + I(x_i \neq y_j) \} & // x_{1:i-1} \rightsquigarrow y_{1:j-1}, \text{ substitute } y_j \end{array}$$

starting from

Such a recursive computing scheme is called dynamic programming.

Distances for Strings / Sequences

Example: compute *d*(excused, exhausted).



Distances for Strings / Sequences

Example: compute d(excused, exhausted).

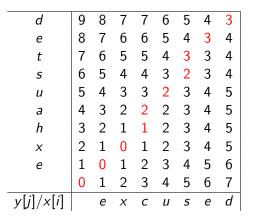
d	9	8	7	7	6	5	4	3
е	8	7	6	6	5	4	3	4
t	7	6	5	5	4	3	3	4
5	6	5	4	4	3	2	3	4
и	5	4	3	3	2	3	4	5
а	4	3	2	2	2	3	4	5
h	3	2	1	1	2	3	4	5
X	2	1	0	1	2	3	4	5
е	1	0	1	2	3	4	5	6
	0	1	2	3	4	5	6	7
y[j]/x[i]		е	X	С	и	5	е	d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 35

Distances for Strings / Sequences

Example: compute d(excused, exhausted).



Machine Learning 2. K-Nearest Neighbor Models

Outline

1. Distance Measures

2. K-Nearest Neighbor Models

3. Scalable Nearest Neighbor

ペロト 《四ト 《三ト 《三ト 》目上 のへで

Neighborhoods

Let *d* be a distance measure. For a dataset

$$D \subseteq X \times Y$$

and $x \in \mathcal{X}$ let

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

be an enumeration with increasing distance to x, i.e., $d(x, x_i) \le d(x, x_{i+1})$ (ties broken arbitrarily). The first $K \in \mathbb{N}$ mainta of each on enumeration is

The first $K \in \mathbb{N}$ points of such an enumeration, i.e.,

$$C_{\mathcal{K}}(x) := \{ (x_1, y_1), (x_2, y_2), \dots (x_{\mathcal{K}}, y_{\mathcal{K}}) \}$$

are called a K-neighborhood of x (in D).

Nearest Neighbor Regression

The K-nearest neighbor regressor

$$\hat{y}(x) := \frac{1}{K} \sum_{(x',y') \in C_K(x)} y'$$

The K-nearest neighbor classifier

$$\hat{p}(Y = y | x) := \frac{1}{K} \sum_{(x',y') \in C_K(x)} I(y = y')$$

and then predict the class with maximal predicted probability

$$\hat{y}(x) := \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \hat{p}(Y = y \mid x)$$

i.e., the majority class w.r.t. the classes of the neighbors.

Nearest Neighbor Regression Algorithm

1: **procedure** PREDICT-KNN-
REG
$$(q \in \mathbb{R}^M, \mathcal{D}^{\text{train}} := \{(x_1, y_1), \dots, (x_N, y_N)\} \in \mathbb{R}^M \times \mathbb{R}, K \in \mathbb{N}, d$$

2: allocate array D of size N
3: **for** $n := 1, \dots, N$ **do**
4: $D_n := d(q, x_n)$
5: $C := \text{ARGMIN-K}(D, K)$
6: $\hat{y} := \frac{1}{K} \sum_{k=1}^{K} y_{C_k}$
7: **return** \hat{y}

もうてい 正則 ふかく ふやく (型を) とう

Nearest Neighbor Classification Algorithm

1: procedure PREDICT-KNN-CLASS $(q \in \mathbb{R}^M, \mathcal{D}^{\text{train}} := \{(x_1, y_1), \dots, (x_N, y_N)\} \in \mathbb{R}^M \times \mathcal{Y}, K \in \mathbb{N}, d\}$ allocate array D of size N2: 3. for n := 1, ..., N do $D_n := d(q, x_n)$ 4: $C := \operatorname{ARGMIN-K}(D, K)$ 5: allocate array \hat{p} of size \mathcal{Y} 6: for k := 1, ..., K do 7: $\hat{p}_{C_{k}} := \hat{p}_{C_{k}} + 1$ 8: for $y \in \mathcal{Y}$ do 9: $\hat{p}_{v} := \frac{1}{k} \hat{p}_{v}$ 10: return $(\hat{p})_{v \in \mathcal{V}}$ 11:

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

Compute the argmin

1: procedure Argmin-K(
$$x \in \mathbb{R}^N, K \in \mathbb{N}$$
)

2: allocate array *M* of size *K*

3: **for**
$$n = 1, ..., \min(K, N)$$
 do

4: INSERT-TOPK
$$(M, n, \pi_x)$$

5: **for**
$$n = K + 1, ..., N$$
 do

6: **if** $x_n < x_{M_K}$ **then**

7: INSERT-TOPK
$$(M, n, \pi_x)$$

8: return M

9: procedure INSERT-TOPK ($M \in \mathcal{X}^K, n \in \mathcal{X}, \pi : \mathcal{X} \to \mathbb{R}$)

10: $k := \text{FIND-SORTED}(M, n, \pi)$

11: **for**
$$I := K, K - 1, \dots, k + 1$$
 do

12:
$$M_l := M_{l-1}$$

13: $M_{k+1} := n$

Note: $\pi_x(n) := x_n$ comparison by x-values. Here, $\mathcal{X} := \mathbb{N}$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・ロト・4日ト・4日ト・4日ト・4日ト

Compute the argmin / find (naive)

- 1: **procedure** FIND-SORTED-LINEAR($x \in \mathcal{X}^{K}, z \in \mathcal{X}, \pi : X \to \mathbb{R}$)
- 2: k := K
- 3: while k > 0 and $\pi(z) < \pi(x_k)$ do

$$4: \qquad k:=k-1$$

5: **return** *k*

Note: Esp. for larger K it is better to use binary search.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Decision Boundaries

For 1-nearest neighbor, the predictor space is partitioned in regions of points that are closest to a given data point:

$$\operatorname{region}_D(x_1), \operatorname{region}_D(x_2), \ldots, \operatorname{region}_D(x_N)$$

with

$$\operatorname{region}_D(x) := \{ x' \in \mathcal{X} \mid d(x', x) \le d(x', x'') \quad \forall (x'', y'') \in D \}$$

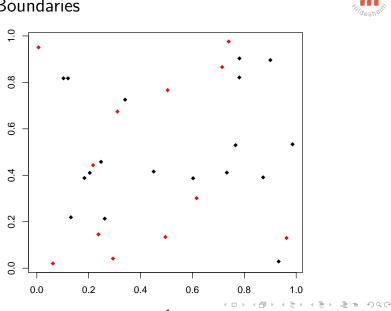
These regions often are called **cells**, the whole partition a **Voronoi tesselation**.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Decision Boundaries

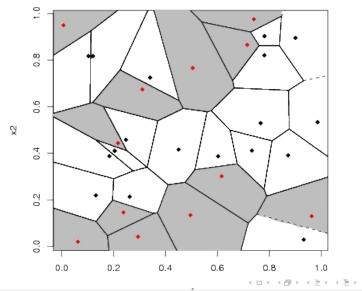
Ž



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 35

Decision Boundaries



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

三日 のへの

Outline

1. Distance Measures

2. K-Nearest Neighbor Models

3. Scalable Nearest Neighbor

うせん 正則 ふぼうえばく (10)

Complexity of K-Nearest Neighbor Classifier

The K-Nearest Neighbor classifier does not need any learning algorithm as it just stores all the training examples.

On the other hand, predicting using a K-nearest neighbor classifier is slow:

- ► To predict the class of a new point x, the distance d(x, x_i) from x to each of the N training examples (x₁, y₁), ..., (x_N, y_N) has to be computed.
- ► If the predictor space is X := ℝ^M, for one such computation we need O(M) operations.
- We then keep track of the K points with the smallest distance.

So in total one needs O(NM + NK) operations.

- 《曰》《圖》《臣》《臣》 王曰 '오오오

Partial Distances / Lower Bounding

In practice, nearest neighbor classifiers often can be accelerated by several methods.

Partial distances:

Compute the distance to each training point x' only partially, e.g.,

$$d_r(x,x') := (\sum_{m=1}^r (x_m - x'_m)^2)^{\frac{1}{2}}, \quad r \leq M$$

As d_r is non-decreasing in r, once $d_r(x, x')$ exceeds the K-th smallest distance computed so far, the training point x' can be dropped.

This is a heuristic:

it may accelerate computations, but it also may slow it down (as there are additional comparisons of the partial distances with the K smallest distance).

ふつん 三冊 《田》《田》《日》

Nearest Neighbor Regression Algorithm

1: **procedure** PREDICT-KNN-
REG
$$(q \in \mathbb{R}^M, \mathcal{D}^{\text{train}} := \{(x_1, y_1), \dots, (x_N, y_N)\} \in \mathbb{R}^M \times \mathbb{R}, K \in \mathbb{N}, d\}$$

2: allocate array D of size N
3: **for** $n := 1, \dots, N$ **do**
4: $D_n := d(q, x_n)$
5: $C := \text{ARGMIN-K}(D, K)$
6: $\hat{y} := \frac{1}{K} \sum_{k=1}^{K} y_{C_k}$
7: **return** \hat{y}

《日》《四》《王》《王》 《王》 《四》

Nearest Neighbor Regression Algorithm

1: procedure PREDICT-KNN-REG $(q \in \mathbb{R}^M, \mathcal{D}^{\text{train}} := \{(x_1, y_1), \dots, (x_N, y_N)\} \in \mathbb{R}^M \times \mathbb{R}, K \in \mathbb{N}, d)$ 2: $C := \pi_1(\text{ARGCLOS-K}(q, x_1, x_2, \dots, x_N, K))$ 3: $\hat{y} := \frac{1}{K} \sum_{k=1}^K y_{C_k}$ 4: return \hat{y}

Note: $\pi_1(n,d) := n$ retains neighbor index n and discards its distance d.

Find Neighbors / Without Lower Bounding

1: procedure ARGCLOS-K(
$$q \in \mathbb{R}^{M}, x_{1}, \dots, x_{N} \in \mathbb{R}^{M}, K \in \mathbb{N}$$
)
2: allocate array M of size K for pairs $\mathbb{N} \times \mathbb{R}$.
3: for $n = 1, \dots, \min(K, N)$ do
4: $d := \sum_{m=1}^{M} (q_{m} - x_{n,m})^{2}$
5: INSERT-TOPK $(M, (n, d), \pi_{2})$
6: for $n = K + 1, \dots, N$ do
7: $d := \sum_{m=1}^{M} (q_{m} - x_{n,m})^{2}$
8: if $d < \pi_{2}(M_{K})$ then
9: INSERT-TOPK $(M, (n, d), \pi_{2})$
10: return M

d := 0

2:

3.

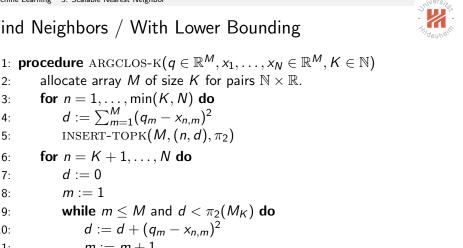
4:

5:

6:

7:

Find Neighbors / With Lower Bounding



8:
$$m := 1$$

9: while $m \le M$ and $d < \pi_2(N)$
10: $d := d + (q_m - x_{n,m})^2$
11: $m := m + 1$
12: if $d < \pi_2(M_K)$ then

13: INSERT-TOPK
$$(M, (n, d), \pi_2)$$

14: return MNote: ArgCLOS-K returns the K points closest to q and their distances. Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Search trees

Search trees:

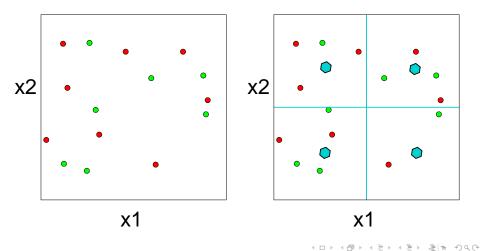
Do not compute the distance of a new point x to **all** training examples, but

- 1. organize the training examples as a tree (or a DAG) with
 - \blacktriangleright sets of training examples at the leaves and
 - ► a prototype (e.g., the mean of the training examples at all descendent leaves) at each intermediate node.
- 2. starting at the root, recursively
 - ▶ compute the distance to all children of the actual node and
 - branch to the child with the smallest distance,
- 3. compute distances only to training examples in the leaf finally found.

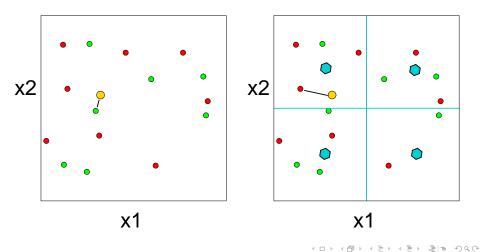
This is an approximation.

・ロト 《母 》 《臣 》 《臣 》 《曰 》

Search trees



Search trees



Approximate Nearest Neighbor

- ► for low dimensions, k-d trees (k-dimensional trees) can be used
 - ► only useful for very low dimensions (2d, 3d)
 - ► in computation geometry, computer graphics, computer vision
- ► for higher dimensions locality-sensitive hashing performs better
 - ▶ only works with specific distances (Euclidean/L2, L1, Hamming)

Locality-Sensitive Hashing [DIIM04]

- idea: create a hash key function h that puts
 - close instances into the same bin, but
 - far instances into different bins.

allowing some errors.

▶ for $x \in \mathbb{R}^M$, the discretized projection on a random line is

$$egin{aligned} h_{a,b,r}(x) &:= \left\lfloor rac{a^T x + b}{s}
ight
ceil, \quad a \in \mathbb{R}^M, b \in [0,s], s \in \mathbb{R}^+ \ & ext{where } a_m \sim \mathcal{N}(0,1), b \sim ext{unif}(0,s) \end{aligned}$$

 \blacktriangleright use the concatenation of L such projection keys as hash key

$$\begin{split} h_{A,b,r}(x) &:= (h_{A_{I,.},b_{I},s}(x))_{I=1,...,L} \\ &= (\left\lfloor \frac{1}{s}(Ax+b)_{I} \right\rfloor)_{I=1,...,L}, \quad A \in \mathbb{R}^{L \times M}, b \in [0,s]^{L}, s \in \mathbb{R}^{+} \end{split}$$

► build *H* such hash maps and test all points found in any of them.

Editing / Pruning / Condensing:

shrink the set of training data points,

e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells of points of the same class.

$$X_{\mathsf{edited}} \mathrel{\mathop:}= \{(x,y) \in X \, | \, \exists (x',y') \in X, R(x') \cap R(x) \neq \emptyset \text{ and } y' \neq y \}$$

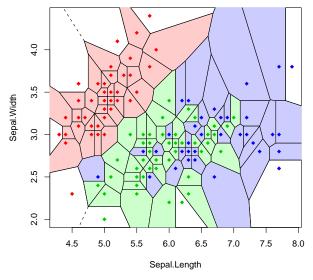
This basic editing algorithm

- retains the decision function,
- has complexity O(M³N^{⊥M/2} log N) (with ⊥x := max{n ∈ N | n ≤ x}; Duda et al. 2001, p. 186).

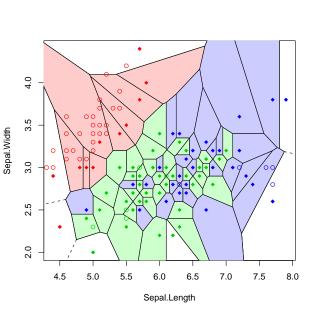
See e.g., Ottmann/Widmayer 2002, p. 501–515 for computing Voronoi diagrams in two dimensions. $\langle \Box \rangle \langle \overline{\partial} \rangle \langle \overline{\partial}$

1:	procedure KNN-EDIT-TRAINING-DATA $(\mathcal{D}^{train} \subseteq \mathbb{R}^M imes \mathcal{Y})$
2:	compute Voronoi cells $R(x)$ for all $(x, y) \in \mathcal{D}^{train}$,
3:	esp. Voronoi neighbors $N(x) := \{(x', y') \in \mathcal{D}^{train} \mid R(x) \cap R(x') \neq \emptyset\}$
4:	$E := \emptyset$
5:	for $(x,y) \in \mathcal{D}^{train}$ do
6:	hasNeighborOfOtherClass := false
7:	for $(x',y') \in N(x)$ do
8:	if $y \neq y'$ then
9:	hasNeighborOfOtherClass := true
10:	if not hasNeighborOfOtherClass then
11:	$E := E \cup \{(x, y)\}$
12:	return $\mathcal{D}^{train} \setminus E$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



シック 三川 エル・エッ・モッ・モッ



Summary

- ► Simple classification and regression models can be built by
 - averaging over target values (regression)
 - ► counting the occurrences of the target class (classification)

of training instances close by (measured in some distance measure).

- ► The nearest neighbor takes always a fixed number *K* of nearest points into account.
 - Alternatively, one also could weight points with some similarity measure (called kernel or Parzen window),

 \Rightarrow the model is called kernel regression and kernel classification.

- ► There are no learning tasks for these models, as simply all training instances are stored ("memory-based methods").
- Therefore, to compute predictions is more costly than for say linear models. There are several acceleration techniques
 - partial distances / lower bounding
 - search trees / locality-sensitive hashing
 - editing

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Further Readings

 [HTFF05, chapter 13.3, 2.3.2], [Mur12, chapter 1.4.2, 14.1+2+4], [JWHT13, chapter 2.2.3,].

() 비로 (로) (로) (로) (립) (ロ)

References

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry, pages 253–262. ACM, 2004.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of statistical learning: data mining, inference and prediction, volume 27. 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning.

Springer, 2013.

Kevin P. Murphy.

Machine learning: a probabilistic perspective. The MIT Press, 2012.

もって きかん かんかん きょうしょう