

Machine Learning

A. Supervised Learning A.8. A First Look at Bayesian and Markov Networks

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

うとの 비로 세종 세종 세명 4 日 *

Outline

- 1. Introduction
- 2. Examples
- 3. Inference
- 4. Learning

シック 単則 《川々 《川々 ▲山々 ▲日々

Syllabus

Tue. 21.10.	(1)	0. Introduction
		A. Supervised Learning
Wed. 22.10.	(2)	A.1 Linear Regression
Tue. 28.10.	(3)	A.2 Linear Classification
Wed. 29.10.	(4)	A.3 Regularization
Tue. 4.11.	(5)	A.4 High-dimensional Data
Wed. 5.11.	(6)	A.5 Nearest-Neighbor Models
Tue. 11.11.	(7)	A.6 Decision Trees
Wed. 12.12.	(8)	A.7 Support Vector Machines
Tue. 18.11.	(9)	A.8 A First Look at Bayesian and Markov Networks
		B. Unsupervised Learning
Wed. 19.11.	(10)	B.1 Clustering
Tue. 25.11.	(10) (11)	B.2 Dimensionality Reduction
Wed. 26.11.	(12)	B.3 Frequent Pattern Mining
	(-)	·
—	(10)	C. Reinforcement Learning
Tue. 2.12.	(13)	C.1 State Space Models
Wed. 3.12.	(14)	C.2 Markov Decision Processes
		《日》《聞》《臣》《臣》 된는 'OQC'

Outline

1. Introduction

2. Examples

3. Inference

4. Learning

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$

$$= p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$$

シック 비로 네트 세트 세트 세 마

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$

$$= p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$$

 x_2 : it rains

$$p(x_2 = \text{false}) = 0.67 p(x_2 = \text{true}) = 0.33$$
 $= p(x_2) = \begin{vmatrix} \text{false true} \\ 0.67 & 0.33 \end{vmatrix} = (0.67, 0.33)$

シック 単則 スポッスポット 間マスロッ

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$
 $= p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$

 x_2 : it rains

$$p(x_2 = \text{false}) = 0.67 p(x_2 = \text{true}) = 0.33$$
 $\ge p(x_2) = \begin{vmatrix} \text{false true} \\ 0.67 & 0.33 \end{vmatrix} = (0.67, 0.33)$

joint distribution:

$$\begin{array}{c} p(x_1 = {\sf false}, x_2 = {\sf false}) &= 0.07 \\ p(x_1 = {\sf false}, x_2 = {\sf true}) &= 0.18 \\ p(x_1 = {\sf true}, x_2 = {\sf false}) &= 0.6 \\ p(x_1 = {\sf true}, x_2 = {\sf true}) &= 0.15 \end{array} \right\} = \begin{array}{c} p(x_1, x_2) & x_2 \\ &= \begin{array}{c} false & {\sf true} \\ \hline x_1 & {\sf false} & 0.07 & 0.18 \\ & {\sf true} & 0.6 & 0.15 \end{array}$$

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$

$$= p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$$

 x_2 : it rains

$$p(x_2 = \text{false}) = 0.67 p(x_2 = \text{true}) = 0.33$$
 $\ge p(x_2) = \begin{vmatrix} \text{false true} \\ 0.67 & 0.33 \end{vmatrix} = (0.67, 0.33)$

joint distribution:

$$p(x_1, x_2) = \frac{\begin{vmatrix} x_2 \\ \text{false true} \\ x_1 & \text{false} \\ \text{true} \end{vmatrix} \begin{array}{c} 0.07 & 0.18 \\ 0.6 & 0.15 \\ 0.6 \\ 0.15 \\ \end{vmatrix}} = \left(\begin{array}{c} 0.07 & 0.18 \\ 0.6 & 0.15 \\ 0.6 \\ 0.15 \\ \end{array} \right)$$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三国■ 釣۹⊙

Independence

for two variables:

$$p(x,y) = p(x) \cdot p(y)$$

for two variable subsets:

$$p(x_1, x_2, \ldots, x_M) = p(x_I) \cdot p(x_J), \quad I, J \subseteq \{1, \ldots, M\}, I \cap J = \emptyset$$

Note: $x_I := \{x_{m_1}, x_{m_2}, \dots, x_{m_K}\}$ for $I := \{m_1, m_2, \dots, m_K\}$.

Independence

for two variables:

$$p(x,y) = p(x) \cdot p(y)$$

for two variable subsets:

$$p(x_1, x_2, \ldots, x_M) = p(x_I) \cdot p(x_J), \quad I, J \subseteq \{1, \ldots, M\}, I \cap J = \emptyset$$

Examples:

(0.07 0.6	0.18 \	(0.17	$\left. \begin{array}{c} 0.08 \\ 0.25 \end{array} \right)$	
0.6	0.15 /	0.5	0.25 /	
not independent independent				

Note: $x_I := \{x_{m_1}, x_{m_2}, \dots, x_{m_K}\}$ for $I := \{m_1, m_2, \dots, m_K\}$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Chain Rule

$$p(x_1, x_2, ..., x_M) = p(x_1)
\cdot p(x_2 \mid x_1)
\cdot p(x_3 \mid x_1, x_2)
\vdots
\cdot p(x_M \mid x_1, x_2, ..., x_{m-1})$$

うせん 単面 ふぼやふぼやふむや

Chain Rule

$$p(x_1, x_2, ..., x_M) = p(x_1)
\cdot p(x_2 | x_1)
\cdot p(x_3 | x_1, x_2)
\vdots
\cdot p(x_M | x_1, x_2, ..., x_{m-1})$$

Examples:

$$\left(\begin{array}{cc} 0.07 & 0.18 \\ 0.6 & 0.15 \end{array}\right) = (0.25, 0.75) \cdot \left(\begin{array}{cc} 0.28 & 0.72 \\ 0.8 & 0.2 \end{array}\right)$$

シック 三郎 エボットボット 雪マ トロッ

Chain Rule

$$p(x_1, x_2, ..., x_M) = p(x_1)
\cdot p(x_2 | x_1)
\cdot p(x_3 | x_1, x_2)
\vdots
\cdot p(x_M | x_1, x_2, ..., x_{m-1})$$

Examples:

$$\left(\begin{array}{cc} 0.17 & 0.08 \\ 0.5 & 0.25 \end{array}\right) = (0.25, 0.75) \cdot \left(\begin{array}{cc} 0.67 & 0.33 \\ 0.67 & 0.33 \end{array}\right)$$

◆□▶ ◆昼▶ ▲토▶ ▲토▶ ▲티= ∽��

Conditional Independence

two variables x, y are **independent conditionally on variable** z:

$$x \perp y \mid z :\Leftrightarrow p(x, y \mid z) = p(x \mid z)$$
$$\cdot p(y \mid z)$$

two variable sets are independent conditionally on variables z_1, \ldots, z_K :

$$\{x_1, \ldots, x_I\} \perp \{y_1, \ldots, y_J\} \mid \{z_1, \ldots, z_K\} : \Leftrightarrow p(x_1, \ldots, x_I, y_1, \ldots, y_J \mid z_1, \ldots, z_K) = p(x_1, \ldots, x_I \mid z_1, \ldots, z_K) \cdot p(y_1, \ldots, y_J \mid z_1, \ldots, z_K)$$

ペロト 《四ト 《三ト 《三ト 》目上 のへで

Conditional Independence / Example

Example:

$$x_n \perp \{x_1, \dots, x_{n-1}\} \mid x_{n-1} \quad \forall n \text{ (Markov property)} \\ \rightsquigarrow p(x_1, \dots, x_N) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_M \mid x_{M-1})$$

- 《日》 《聞》 《臣》 《臣》 三世 '今へぐ

Graphical Models

- represent joint distributions of variables by graphs
 - ► by directed graphs: Bayesian networks
 - by undirected graphs: Markov networks
 - by mixed directed/undirected graphs.
- nodes represent random variables
- absent edges represent conditional independence

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Directed Graph Terminology

- directed graph: $G := (V, E), E \subseteq V \times V$
 - V set called nodes / vertices
 - *E* called **edges**, $(v, w) \in E$ edge from *v* to *w*.
- adjacency matrix $A \in \{0, 1\}^{N \times N}$

$$A_{v,w} := \delta((v,w) \in E), \quad v,w \in \{1,\ldots,N\}, N := |V|$$

- ▶ parents: $pa(v) := \{w \in V \mid (w, v) \in E\}$
- children: $ch(v) := \{w \in V \mid (v, w) \in E\}$
- **neighbors**: $nbr(v) := pa(v) \cup ch(v)$
- family: $fam(v) := pa(v) \cup \{v\}$
- ▶ root: v without parents.
- ▶ leaf: v without children.

Note: $\delta(P) := 1$ if proposition P is true, := 0 otherwise.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

[Mur12, fig. 10.1a]

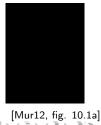
Directed Graph Terminology

- path: $p \in V^*$: $(p_i, p_{i+1}) \in E$ for all i.
 - $p = (p_1, \ldots, p_M), p_m \in V$
 - length |p| := M
 - starts at p₁
 - ▶ ends at *p*_M
 - ▶ paths $G^* := \{ p \in V^* \mid (p_i, p_{i+1}) \in E \quad \forall i = 1, \dots, |p| 1 \}.$
 - ▶ $v \rightsquigarrow w$: exists path from v to w, i.e., $p \in G^*$: $p_1 = v, p_{|p|} = w$.
- ancestors: $\operatorname{anc}(v) := \{ w \in V \mid w \rightsquigarrow v \}$
- **descendants**: desc(v) := { $w \in V | v \rightsquigarrow w$ }
- ► in-degree |pa(v)|
- ► out-degree |ch(v)|
- ► **degree** |nbr(v)|

Note: $V^* := \bigcup_{M \in \mathbb{N}} V^M$ finite *V*-sequences.

Directed Graph Terminology

- cycle/loop at $v: v \rightsquigarrow v$
 - self loop: $(v, v) \in E$
- directed acyclic graph / DAG: directed graph without cycles.
- ► topological ordering: directed graph without cycles.
 - numbering of the nodes s.t. all nodes have lower number than their children.
 - exists for DAGs.



Bayesian Networks / Directed Graphical Models A Bayesian network (aka directed graphical model) is a set of conditional probability distributions/densities (CPDs)

$$p(x_m \mid x_{\mathsf{ctxt}(m)}), \quad m \in \{1, \ldots, M\}$$

s.t. the graph defined by

$$V := \{1, ..., M\}$$

 $E := \{(n, m) \mid m \in V, n \in \text{ctxt}(m)\}, \text{ i.e., } pa(m) := \text{ctxt}(m)$

is a DAG.

A Bayesian network defines a factorization of the joint distribution

$$p(x_1,\ldots,x_M) = \prod_{m=1}^M p(x_m \mid x_{\mathsf{pa}(m)})$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Bayesian Networks / Example For the DAG below,

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2, x_3) p(x_5 \mid x_3)$

[Mur12, fig. 10.1a] □ → < □ → < = → < = → = = ∽ < ⊙

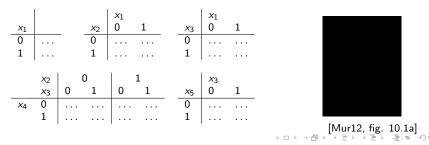
Universiter.

Bayesian Networks / Example For the DAG below,

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2, x_3) p(x_5 \mid x_3)$

lf

- all variables are binary and
- ► all CPDs given as **conditional probability tables (CPTs)**, then the BN is defined by the following 5 CPTs:



Machine Learning 2. Examples

Outline

1. Introduction

2. Examples

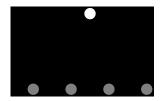
3. Inference

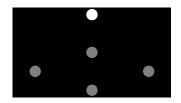
4. Learning

Machine Learning 2. Examples

Naive Bayes Classifier

$$p(y, x_1, \dots, x_M) = p(y)p(x_1 \mid y)p(x_2 \mid y) \cdots p(x_M \mid y)$$
$$= p(y) \prod_{m=1}^M p(x_m \mid y)$$





Naive Bayes Classifier

Tree Augmented Naive Bayes [Mur12, fig. 10.2]

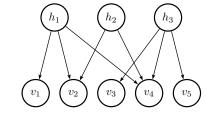
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

500

Medical Diagnosis

- ► bipartite graph
- observed variables x_1, \ldots, x_M (symptoms)
- ▶ hidden variables z_1, \ldots, z_K (diseases / causes)

$$p(x_1,\ldots,x_M,z_1,\ldots,z_M) = \prod_{k=1}^K p(z_k) \prod_{m=1}^M p(x_m \mid z_{\mathsf{pa}(m)})$$



Note: In the diagram z is called h and x is called v.

[Mur12, fig. 10.5b] □ ▶ ◀ 문 ▶ ◀ 문 ▶ 로 말 = ∽ ৭.৫

Markov Models

first order:

$$p(x_1, \dots, x_M) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_M \mid x_{M-1})$$
$$= p(x_1) \prod_{m=1}^{M-1} p(x_{m+1} \mid x_m)$$

[Mur12, fig. 10.3a] 《 다 > 《 문 > 《 문 > 《 문 > [] = ^(Q) Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 33

Markov Models / Second Order

second order:

$$p(x_1, \dots, x_M) = p(x_1, x_2) p(x_3 \mid x_1, x_2) p(x_4 \mid x_2, x_3) \cdots p(x_M \mid x_{M-2}, x_{M-1})$$
$$= p(x_1, x_2) \prod_{m=2}^{M-1} p(x_{m+1} \mid x_{m-1}, x_m)$$

17 / 33

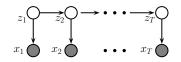
Machine Learning 2. Examples

Hidden Markov Models

- observed variables x_1, \ldots, x_M
- hidden variables z_1, \ldots, z_M

$$p(x_1,...,x_M,z_1,...,z_M) = p(z_1) \prod_{m=1}^{M-1} p(z_{m+1} \mid z_m) \prod_{m=1}^M p(x_m \mid z_m)$$

- transition model $p(z_{m+1} | z_m)$
- observation model $p(x_m \mid z_m)$



Machine Learning 3. Inference

Outline

1. Introduction

2. Examples

3. Inference

4. Learning

うとの 単同 《日》《日》 《日》

The Probabilistic Inference Problem

Given

- a Bayesian model $\theta := G = (V, E)$,
- a query consisting of
 - a set X := {x₁,..., x_M} ⊆ V of predictor variables (aka observed, visible variables)
 - with a value v_m for each x_m (m = 1, ..., M) and
 - a set Y := {y₁,...,y_J} ⊆ V of target variables (aka query variables), with X ∩ Y = Ø,

compute

$$p(Y \mid X = v; \theta) := p(y_1, \dots, y_J \mid x_1 = v_1, x_2 = v_2, \dots, x_M = v_M; \theta)$$

= $(p(y_1 = w_1, \dots, y_J = w_J \mid x_1 = v_1, x_2 = v_2, \dots, x_M = v_M; \theta))_{w_1, \dots, w_J}$

Variables that are neither predictor variables nor target variables are called **nuisance variables**.

Inference Without Nuisance Variables

Without nuisance variables: $V = X \dot{\cup} Y$.

$$p(Y \mid X = v; \theta) \stackrel{\text{def}}{=} \frac{p(X = v, Y; \theta)}{p(X = v; \theta)} = \frac{p(X = v, Y; \theta)}{\sum_{w} p(X = v, Y = w; \theta)}$$

- first, clamp predictors X to their observed values v,
- ▶ then, normalize $p(X = v, Y; \theta)$ to sum to 1 (over Y).
- ▶ p(X = v; θ) likelihood of the data / probability of evidence is a constant.

Note: Summation over w is over all possible values of variables Y.

Inference With Nuisance Variables

Nuisance variables: $Z := \{z_1, \ldots, z_K\} := V \setminus (X \dot{\cup} Y).$

- 1. add to target variables
- 2. answer resulting query without nuisance variables: $p(Y, Z \mid X)$.
- 3. marginalize out nuisance variables:

$$p(Y \mid X = v; \theta) \stackrel{\text{marginalization}}{=} \sum_{u} p(Y, Z = u \mid X = v; \theta)$$

Note: Summation over *u* is over all possible values of variables Z.

Inference With Nuisance Variables

Nuisance variables: $Z := \{z_1, \ldots, z_K\} := V \setminus (X \dot{\cup} Y).$

- 1. add to target variables
- 2. answer resulting query without nuisance variables: $p(Y, Z \mid X)$.
- 3. marginalize out nuisance variables:

$$p(Y \mid X = v; \theta) \stackrel{\text{marginalization}}{=} \sum_{u} p(Y, Z = u \mid X = v; \theta)$$

Caveat: This is a naive algorithm never used in practice. See BN lecture for practically useful BN inference algorithms.

Note: Summation over u is over all possible values of variables $Z_{a, b} \in \mathbb{B}^{n} \times \mathbb{B}^{n} \times \mathbb{B}^{n} \times \mathbb{B}^{n} \times \mathbb{B}^{n}$

Complexity of Inference

- ► for simplicity assume
 - all M predictor variables are nominal with L levels,
 - all K nuisance variables are nominal with L levels,
 - ➤ a single target variable: Y = {y}, J = 1 also nominal with L levels.
- without (Conditional) Independencies:
 - full table *p* requires $L^{M+K+1} 1$ cells storage.
 - inference requires $O(L^{K+1})$ operations.
 - for each Y = w sum over all L^{K} many Z = u.
- ▶ with (Conditional) Independencies / Bayesian network:
 - CPDs p require $O((M + K + 1)L^{\max \text{ indegree}+1})$ cells storage.
 - inference requires $O((K+1)L^{\text{treewidth}+1})$ operations.
 - ▶ treewidth=1 for a chain!

Note: See the Bayesian networks lecture for BN inference algorithms.

・< E > < E > < E > <

Outline

1. Introduction

2. Examples

3. Inference

4. Learning

シック 単則 《川々 《川々 ▲山々 ▲日々

Learning Bayesian Networks

► parameter learning: given

- the structure of the network (graph G) and
- a regularization penalty $\text{Reg}(\theta)$,
- data x_1, \ldots, x_N ,

learn the CPDs p.

$$\hat{ heta} := rg\max_{ heta} \sum_{n=1}^{N} \log p(x_n; heta) + \mathsf{Reg}(heta)$$

- ► structure learning: given
 - ► data,

learn the **structure** *G* and the **CPDs** *p*.

《日》《聞》《臣》《臣》《曰》《曰》

Bayesian Approach

- ► in the Bayesian approach, parameters are also considered to be random variables, thus,
- learning is just a special type of inference (with the parameters as targets)
- ► information about the distribution of the parameters before seeing the data is required (prior distribution p(θ))
- parameter learning: given
 - the structure of the network (graph G) and
 - a prior distribution $p(\theta)$ of the parameters,
 - data x_1, \ldots, x_N ,

learn the CPDs p.

$$\hat{ heta} := rg\max_{ heta} \sum_{n=1}^{N} \log p(x_n; heta) + \log p(heta)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

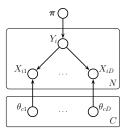
Plate Notation

- variables on plates are duplicated
 - ► the number of copies is given in the lower right corner.
- ► an **index** is used to differentiate copies of the same variable.

Example 1: data x_1, \ldots, x_N is independently identically distributed (iid)

Plate Notation

- variables on plates are duplicated
 - ► the number of copies is given in the lower right corner.
- ► an **index** is used to differentiate copies of the same variable.
- variables being in several plates will be duplicated for every combination, i.e., have several indices.
 - for clarity, the index should be added to the plate (but often is omitted).
- Example 2: Naive Bayes classifier.





Machine Learning 4. Learning

Learning from Complete Data

Likelihood decomposes w.r.t. graph structure:

$$p(\mathcal{D} \mid \theta) := \prod_{n=1}^{N} p(x_n \mid \theta)$$

= $\prod_{n=1}^{N} \prod_{m=1}^{M} p(x_{n,m} \mid x_{n,pa(m)}, \theta_m)$
= $\prod_{m=1}^{M} \prod_{n=1}^{N} p(x_{n,m} \mid x_{n,pa(m)}, \theta_m)$
= $\prod_{m=1}^{M} p(\mathcal{D}_m \mid \theta_m)$

where θ_m are the parameters of $p(x_m \mid pa(m))$

Note: In Bayesian contexts, often $p(\ldots \mid \theta)$ is used instead of $p(\ldots; \theta)_{\mathbb{D}^{+}}$, $(\mathbb{D}^{+})_{\mathbb{D}^{+}}$, $(\mathbb{D}^{+$

Machine Learning 4. Learning

Learning from Complete Data

If the prior also factorizes,

$$p(heta) = \prod_{m=1}^{M} p(heta_m)$$

then the posterior factorizes as well

$$p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta)p(\theta) = \prod_{m=1}^{M} p(\mathcal{D}_m \mid \theta_m)p(\theta_m)$$

and the parameters θ_m of each CPD can be estimated independently.

Note: In Bayesian contexts, often $p(\ldots \mid \theta)$ is used instead of $p(\ldots; \theta)_{\mathbb{D}^{+}}$, $(\mathbb{D}^{+})_{\mathbb{D}^{+}}$, $(\mathbb{D}^{+$

Learning from Complete Data / Dirichlet Prior

lf

- all variables are nominal,
- ▶ variable *m* has L_m levels (m = 1, ..., M), and
- ▶ all CPDs are described by conditional probability tables (CPTs)

$$p(x_m \mid x_{pa(m)}) = \theta_{m,c,l}, \quad c := x_{pa(m)}, l := x_m$$
with $\sum_{l=1}^{L} \theta_{m,c,l} = 1, \quad \forall m, c$

a Dirichlet distribution for each row in the CPT

$$heta_{m,c,\cdot} \sim \mathsf{Dir}(lpha_{m,c}), \quad lpha_{m,c} \in (\mathbb{R}^+_0)^{L_m}$$

is a useful prior.

- 《曰》 《圖》 《言》 《言》 三世 - 今今や

Learning from Complete Data / Dirichlet Prior

Then the posterior $p(\theta_{m,c,\cdot} \mid D)$ is also Dirichlet:

$$\theta_{m,c,\cdot} \mid \mathcal{D} \sim \mathsf{Dir}(\alpha_{m,c} + N_{m,c})$$

$$N_{m,c,l} := \sum_{n=1}^{N} \delta(x_{n,m} = l, x_{n,\mathsf{pa}(m)=c})$$
with mean $\bar{\theta}_{m,c,l} = \frac{N_{m,c,l} + \alpha_{m,c,l}}{\sum_{l'=1}^{L} N_{m,c,l'} + \alpha_{m,c,l'}}$

◇ □ ▷ ∢ 쿱 ▷ ∢ 쿱 ▷ ∢ 팁 ▷ ◇ ○ ▷

Machine Learning 4. Learning

Learning from Complete Data / Example graph structure: data:

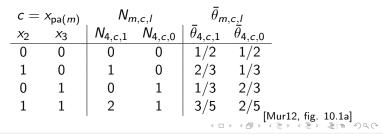
prior:

x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	X_5
0	0	1	0	0
0	1	1	1	1
1	1	0	1	0
0	1	1	0	0
0	1	1	1	0

$$p(heta_{m,c}) := \mathsf{Dir}(1,1)$$

 $orall m,c$

learned parameters for CPT of x_4 (m = 4):



Jniversitat

Learning with Missing and/or Hidden Variables

Learning with

- missing values or
- hidden variables
- is more complicated as
 - the likelihood no longer factorizes and
 - neither is convex.

 \rightsquigarrow use iterative approximation algorithms to find a local MAP or ML minimum.

シック 비로 《로》《토》《曰》

Summary

- Bayesian Networks define a joint probability distribution by a factorization of conditional probability distributions (CPDs) p(x_n | pa(x_n))
 - ▶ Conditions pa(m) form a DAG.
 - ► For nominal variables, all CPDs can be represented as tables (CPTs).
 - Storage complexity is $O(L^{\max \text{ indegree}+1})$ (instead of $O(L^M)$).
- ► Many model classes essentially are Bayesian networks:
 - ► Naive Bayes classifier, Markov Models, Hidden Markov Models (HMMs)
- Inference in BN means to compute the (marginal joint) distribution of target variables given observed evidence of some predictor variables.
 - ► A Bayesian network can answer queries for arbitrary targets (not just a predefined one as most predictive models).
 - Nuisance variables (for a query) are variables neither observed nor used as targets.
 - ► Inference with nuisance variables can be done efficiently for DAGs with small tree width.

Summary (2/2)

- Learning BN has to distinguish between
 - ► parameter learning: learn just the CPDs for a given graph, vs.
 - structure learning: learn both, graph and CPDs.
- Parameter learning the maximum aposteriori (MAP) for BN with CPTs and Dirichlet prior can be done simply by counting the frequencies of families in the data.
- Some/most conditional independence assumptions are coded in the graph and can be read off by d-separation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Universite Hildeshein

Further Readings

▶ [Mur12, chapter 10].

(日本)(日本)(日本)(日本)(日本)(日本)(日本)

References

Kevin P. Murphy.

Machine learning: a probabilistic perspective. The MIT Press, 2012.