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Machine Learning 1. Introduction

Hidden Markov Models
I observed variables x1, . . . , xM
I hidden variables z1, . . . , zM

p(x1:M | z1:M) = p(x1, . . . , xM , z1, . . . , zM) = p(z1:M)p(x1:M | z1:M)

= p(z1)
M−1∏
m=1

p(zm+1 | zm)
M∏

m=1

p(xm | zm)

I transition model p(zm+1 | zm)
I observation model p(xm | zm)
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Machine Learning 1. Introduction

HMMs

I consist of a discrete-time Markov chain with hidden variables plus an
observation model p(xm | zm)

I p(xm+1 | xm) can be written as a M ×M Transition Matrix A

Observations in an HMM can be discrete or continuous. Continuous
HMM are called State Space Models (SSM).

I discrete: observation model is observation matrix
p(xm = j | zm = i) = A(i , j)

I continuous: conditional Gaussian
p(xt | zt = i) = N (xt | µk ,Σk)

HMMs can represent long-range dependencies between observations.
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Machine Learning 1. Introduction

Applications

Some Applications for HMMs are:

I automatic speech recognition

I activity recognition

I gene finding

I · · ·
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Machine Learning 2. Inference

Inference

Inference in HMMs:

I Filtering:
compute p(zm, x1:m) online or recursively

I Prediction:
compute p(zm+h | x1:m), h > 0 (horizon)

e.g h = 2

p(zm+2 | x1:m) =
∑
zm+1

∑
zm

p(zm+2 | zm+1)p(zm+1 | zm)p(zm | x1:m)

I MAP estimation:
compute argmaxz1:M

p(z1:M | x1:M)
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Machine Learning 2. Inference

Shaded region is the interval for which we have data
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Machine Learning 2. Inference

Forward Backward Algorithm

I compute the joint distribution p(zm | x1:M)

I Use Forward Algorithm to compute p(zm, x1:m)

I Use Backward Algorithm to compute p(xm+1:M | zm)

I p(zm | x1:M) ∝zm p(zm, x1:M) = p(xm+1:M | zm)︸ ︷︷ ︸
B

p(zm, x1:m)︸ ︷︷ ︸
F

(normalize

and sum over the set)

I Assume p(xm | zm), p(zm | zm−1), p(z1) are known
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Machine Learning 2. Inference

Forward Algorithm

αm(zm) = p(zm, x1:m) =
∑
zm−1

p(zm, zm−1, x1:m)

=
∑
zm−1

p(xm | zm, zm−1, x1:m−1)p(zm | zm−1, x1:m−1)p(zm−1, x1:m−1)

=
∑
zm−1

p(xm | zm)p(zm | zm−1) p(zm, x1:m−1)︸ ︷︷ ︸
αm−1(zm−1)

α1(z1) = p(z1, x1) = p(z1)p(x1 | z1)
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Machine Learning 2. Inference

Backward Algorithm

Given x1, . . . , xM :
Compute p(xm+1:M | zm) for all m and zm.

βm(zm) = p(xm+1:M | zm) =
∑
zm+1

p(xm+1:M , zm+1 | zm)

=
∑
zm+1

p(xm+2:M | zm+1, zm, xm+1)p(xm+1 | zm+1, zm)p(zm+1 | zm)

=
∑
zm+1

p(xm+2:M | zm+1)︸ ︷︷ ︸
βm+1(zm+1)

p(xm+1 | zm+1)p(zm+1 | zm)

βM(zM) = 1, ∀zM
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Machine Learning 2. Inference

Viterbi Algorithm

Given: x1, . . . , xM
Assume distributions are known.

Compute z∗ = arg maxz1:M
p(z1:M | x1:M)

Note:
arg maxz p(z | x) = arg maxz p(z , x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 22



Machine Learning 2. Inference

Viterbi Algorithm

Given: x1, . . . , xM
Assume distributions are known.
Compute z∗ = arg maxz1:M

p(z1:M | x1:M)

Note:
arg maxz p(z | x) = arg maxz p(z , x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 22



Machine Learning 2. Inference

Viterbi Algorithm

Given: x1, . . . , xM
Assume distributions are known.
Compute z∗ = arg maxz1:M

p(z1:M | x1:M)
Note:
arg maxz p(z | x) = arg maxz p(z , x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 22



Machine Learning 2. Inference

Viterbi Algorithm

δm(zm) = max
z1:m−1

p(z1:m, x1:k)

= max
z1:m−1

p(xm | zm)p(zm | zm−1)p(z1:m−1, x1:m−1)

= max
zm−1

p(xm | zm)p(zm | zm−1) max
z1:m−2

p(z1:m−1, x1:m−1)︸ ︷︷ ︸
δm−1(zm−1)


We also keep track of the maximizing sequence in each step
am(zm) = arg maxi δm−1(i)p(zm = j | zm−1 = i)p(xm | zm = j)
most probable final state z∗M
z∗M = arg maxi δM(i)
traceback:
z∗m = am+1(z∗m+1)
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Machine Learning 2. Inference

Example
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Machine Learning 2. Inference

Kalman Filter

I State Space Models (SSM) are like HMM, except hidden states are
continuous

I special cas LG-SSM, all the CPDs are linear-Gaussian

I Transition model and observation model are linear function

I

zm = Amzm−1 + εm, εm system noise (Gaussian) ,

εm ∼ N (0,Qm)

ym = Cmzm + δm, δm observation noise (Gaussian) ,

εm ∼ N (0,Rm)
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Machine Learning 2. Inference

Inference Kalman Filter

I initial belief state Gaussian p(z1) = N (µ1|0,Σ1|0) then
p(zm | y1:m) = N (µm,Σm) are Gaussian

I online case is analogous to Forward Algorithm for HMM

I offline case is analogous to Forward-Backward-Algorithm for HMM

I Kalman Filter: algorithm for exact Bayesian filtering for LG-SSM

I marginal posterior at time m

p(zm | y1:m) = N (zm | µm,Σm)
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Machine Learning 2. Inference

Algorithm
Prediction Step:

p(zm | y1:m−1) = N (zm | µm|m−1,Σm|m−1)

µm|m−1 = Amµm−1

Σm|m−1 = AmΣm−1A
T
m + Qm

Update Step:

p(zm | ym, y1:m−1) ∝ p(ym | zm)p(zm | y1:m−1)

p(zm | y1:m) = N (zm | µm,Σm)

µm|m−1 = µm|m−1 + Kmrm

Σm|m−1 = (I − KmCm)Σm|m−1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 22



Machine Learning 2. Inference

Algorithm
Prediction Step:

p(zm | y1:m−1) = N (zm | µm|m−1,Σm|m−1)

µm|m−1 = Amµm−1

Σm|m−1 = AmΣm−1A
T
m + Qm

Update Step:

p(zm | ym, y1:m−1) ∝ p(ym | zm)p(zm | y1:m−1)

p(zm | y1:m) = N (zm | µm,Σm)

µm|m−1 = µm|m−1 + Kmrm

Σm|m−1 = (I − KmCm)Σm|m−1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 22



Machine Learning 2. Inference

Algorithm
Prediction Step:

p(zm | y1:m−1) = N (zm | µm|m−1,Σm|m−1)

µm|m−1 = Amµm−1

Σm|m−1 = AmΣm−1A
T
m + Qm

Update Step:

p(zm | ym, y1:m−1) ∝ p(ym | zm)p(zm | y1:m−1)

p(zm | y1:m) = N (zm | µm,Σm)

µm|m−1 = µm|m−1 + Kmrm

Σm|m−1 = (I − KmCm)Σm|m−1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 22



Machine Learning 2. Inference

Algorithm
Prediction Step:

p(zm | y1:m−1) = N (zm | µm|m−1,Σm|m−1)

µm|m−1 = Amµm−1

Σm|m−1 = AmΣm−1A
T
m + Qm

Update Step:

p(zm | ym, y1:m−1) ∝ p(ym | zm)p(zm | y1:m−1)

p(zm | y1:m) = N (zm | µm,Σm)

µm|m−1 = µm|m−1 + Kmrm

Σm|m−1 = (I − KmCm)Σm|m−1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 22



Machine Learning 2. Inference

Algorithm
Prediction Step:

p(zm | y1:m−1) = N (zm | µm|m−1,Σm|m−1)

µm|m−1 = Amµm−1

Σm|m−1 = AmΣm−1A
T
m + Qm

Update Step:

p(zm | ym, y1:m−1) ∝ p(ym | zm)p(zm | y1:m−1)

p(zm | y1:m) = N (zm | µm,Σm)

µm|m−1 = µm|m−1 + Kmrm

Σm|m−1 = (I − KmCm)Σm|m−1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 22



Machine Learning 2. Inference

Algorithm
Prediction Step:

p(zm | y1:m−1) = N (zm | µm|m−1,Σm|m−1)

µm|m−1 = Amµm−1

Σm|m−1 = AmΣm−1A
T
m + Qm

Update Step:

p(zm | ym, y1:m−1) ∝ p(ym | zm)p(zm | y1:m−1)

p(zm | y1:m) = N (zm | µm,Σm)

µm|m−1 = µm|m−1 + Kmrm

Σm|m−1 = (I − KmCm)Σm|m−1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 22



Machine Learning 2. Inference

Algorithm
Prediction Step:

p(zm | y1:m−1) = N (zm | µm|m−1,Σm|m−1)

µm|m−1 = Amµm−1

Σm|m−1 = AmΣm−1A
T
m + Qm

Update Step:

p(zm | ym, y1:m−1) ∝ p(ym | zm)p(zm | y1:m−1)

p(zm | y1:m) = N (zm | µm,Σm)

µm|m−1 = µm|m−1 + Kmrm

Σm|m−1 = (I − KmCm)Σm|m−1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 22



Machine Learning 2. Inference

Algorithm

with rm residual or innovation

rm , ym − ŷm

ŷm , Cmµm|m−1

and Km Kalman gain matrix

Km , Σm|m−1C
T
m S−1

m

Sm , CmΣm|m−1C
T
m + Rm

All quantities for algorithm
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ŷm , Cmµm|m−1

and Km Kalman gain matrix

Km , Σm|m−1C
T
m S−1

m

Sm , CmΣm|m−1C
T
m + Rm

All quantities for algorithm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 22



Machine Learning 2. Inference

Algorithm

with rm residual or innovation

rm , ym − ŷm
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Machine Learning 2. Inference

Kalman Smoothing Algorithm

Analogous to Forward-Backward Algorithm for HMM
Backwards equations:

p(zm | y1:M) = N (µm|M ,Σm|M)

µm|M = µm + Jm(µm+1|M − µm+1|m)

Σm|M = Σm + Jm(Σm+1|M − Σm+1|m)JTm

Jm , ΣmA
T
m+1Σ−1

m+1|m

Jm is the backwards Kalman gain matrix
Initialized with µm and Σm from the Kalman Filter
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Machine Learning 3. Learning

Outline

1. Introduction

2. Inference

3. Learning
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Machine Learning 3. Learning

Learning HMMs

How to estimate the parameters θ = (π,A,B).

π(i) = p(z1 = i) initial state distribution,
A(i , j) = p(zm = j | zm−1 = i) transition matrix and
B are the parameters of the class-conditional densities p(xm | zm = j).

Algorithm:
Baum-Welch-Algorithm (EM-Learning)
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Machine Learning 3. Learning

Baum-Welch-Algorithm
I Uses EM-Algorithm to find the maximum likelihood estimate of the

parameters of a HMM

I given observed feature vectors
I finds local maximum for θ∗ = maxθ p(X | θ)
I Set θ = (A,B, π) with random initial conditions (if not no prior

information is known)
I Use Forward an d Backwards Algorithms to calculate temporary

variables: γi (m) = p(zm = i | x1:m, θ) = αi (m)βi (m)∑
j αj (m)βj (m)

I

ξij(m) = p(zm = i , zm+1 = j | x1:m, θ)

=
αi (m)aijβj(m + 1)bj(xm+1)∑

m αm(m)βm(m)

aij = p(zm = j | zm−1 = i), p(xm+1 | zm = j) = bj(xm+1)
I θ can now be updated using M-Step
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step
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Further Readings

I [Mur12, chapter 17,18].
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