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Machine Learning 1. Introduction

Agent-Environment Interaction

I learner and decisionmaker is called agent

I the agent interacts with the environment (everything outside the
agent)

I the agents selects actions and the environment responds with new
situations and rewards

I the agents tries to maximize the rewards over time
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Machine Learning 1. Introduction

Overview

I Markov Decision Process (MDP)

I An MDP consists of States S (fully observed), actions A, rewards
ra(s) = R(s, a, s ′) and transition probabilities Ta(s, s ′)

I Our System is Markovian, so the transition function depends just on
the current state:

P(st+1 | st , at , st−1, at−1, . . .) = P(st+1 | st , at) = Tat (s, s
′)
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Machine Learning 1. Introduction

Overview

I A policy π describes how actions are picked at each state:

π(s, a) = p(at = a | st = s)

I The value function of a policy V π is:

V π(s) = Eπ

{
rt+1+γrt+2+γ2rt+3+. . .

}
= Eπ

{ ∞∑
k=0

γk rt+k+1 | st = s
}

I We can find V π by solving a linear system of equations

I Policy iteration gives a greedy local search procedure based on the
value of policies
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Machine Learning 1. Introduction

Markov Decision Process

I influence diagram of an MDP

I easy to solve, since we only have to compute mapping from observed
states to actions

I assume Markov Property holds as nearly as possible
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Machine Learning 1. Introduction

Action-Value Function

Similarly to the Value function we define the value of taking action a in
state s under a policy π, denoted as Qπ(s, a)

Qπ(s, a) = Eπ

{
Rt | st = s, at = a

}
= Eπ

{ ∞∑
k=0

γk rt+k+1 | st = s, at = a
}

expected return starting from s, taking action a and following policy π
We call Qπ action-value function for policy π
return means a function of future rewards that the agent seeks to
maximize
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Machine Learning 2. Dynamic Programming and Reinforcement Learning

Dynamic Programming (DP)

I are well developed mathematically

I but require a complete and accurate model of the environment

I refers to a collection of algorithms that can be used to compute
optimal policies given a perfect model of the environment

I computational expensive

I assume the environment is a finite MDP, state and action sets are
finite
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Machine Learning 2. Dynamic Programming and Reinforcement Learning

Optimal Policies and Optimal Value Functions

I goal: find policy that has maximum value

I The optimal value function V ∗ is defined as:

V ∗(s) = max
π

V π(s)

I the best value that can be achieved at each state

I In a finite MDP exists a unique optimal value function (shown by
Bellman, 1957)

I any policy that achieves the optimal value is called a optimal policy,
there has to be at least one deterministic optimal policy

I both policy iteration and value iteration can be used
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Machine Learning 2. Dynamic Programming and Reinforcement Learning

Algorithm Idea

I Update rule with recursive Bellman equations
I Value iteration:

1. Start: initial approximation V0

2. Each iteration: update value function estimate

Vk+1(s)← max
a

(
ra(s) + γ

∑
s′

Ta(s, s ′)Vk(s ′)

)
,∀s

3. Stop when maximum value change between iterations is below a
threshold

I Similar update for policy evaluation

I more efficient: instead of updating every state on every iteration,
focus on important states
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Machine Learning 2. Dynamic Programming and Reinforcement Learning

Learning with Dynamic Programming

I learn approximate model r̂a(s), T̂a(s, s ′); observe transitions in the
environment

I maximum likelihood for probabilities and supervised learning for the
rewards

I this approach is called model-based RL

I model-based vs. model-free reinforcement learning:
Model-based:

I learn MDP model, or an approximation
I use it for policy evaluation or to find optimal policy

Model-free:
I derive optimal policy without explicitly learning the model
I useful when model is difficult to represent and/or learn
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Machine Learning 2. Dynamic Programming and Reinforcement Learning

Asynchronous Dynamic Programming

I DP methods involve operations over the entire state set of the MDP

I if the state set is very large, then even a single sweep can be
prohibitively expensive

I an asynchronous algorithm must continue to backup the values of all
the states (to converge correctly), it can’t ignore any state after some
point in the computation

I asynchronous algorithms allow great flexibility in selecting states

I e.g. generate trajectories through the MDP and update states
whenever they appear on such a trajectory

or: important states like: visited often during a game/procedure
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Machine Learning 3. Monte Carlo Method

Outline

1. Introduction

2. Dynamic Programming and Reinforcement Learning

3. Monte Carlo Method

4. Temporal-Difference Prediction

5. Partially Observable Markov Decision Processes
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Machine Learning 3. Monte Carlo Method

Introduction

I first learning method for estimating value functions and discover
optimal policies

I no need of complete knowledge of the environment

I Monte Carlo methods require only experience (sample sequences of
states, actions and rewards) from online or simulated interaction with
the environment

I only for episodic tasks, i.e. we assume experience is divided into
episodes

I only after completition of an episode value estimates and policies are
changed
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Machine Learning 3. Monte Carlo Method

Monte Carlo Method (simple)

I suppose we have episodic tasks

I the agent behaves according to some policy π for a while, generating
several trajectories

I Compute V π(s) by averaging the observed returns after s on the
trajectories in which s was visited

I Every-Visit MC: average returns for every time s is visited in an
episode

I First-Visit MC: average returns only for first time s is visited in an
episode

I both converge asymptotically

I do the computation incrementally: after received return Rt , update

V (st)← V (st) + α(Rt − V (st)), α ∈ (0, 1) learning rate
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Machine Learning 3. Monte Carlo Method

First-visit Monte Carlo policy evaluation
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Machine Learning 3. Monte Carlo Method

Example: Blackjack

I object: card sum to be greater than the dealers, not exceeding 21

I states:

I curent sum (12− 21)
I dealer’s showing card (ace, 2− 10)
I usable ace? (counting ace as 11 without going to bust)

I reward: s+1 winning, 0 draw, −1 loss

I actions: stick (stop receiving cards), hit (receive another card)

I policy: stick if sum is 20 or 21, else hit

I Dealer’s fixed strategy: stick if ≤ 17 and hit if < 17
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Machine Learning 3. Monte Carlo Method

Example: Blackjack/approximate value functions
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Machine Learning 3. Monte Carlo Method

Monte Carlo Estimation of Action Values

I If a model is not available, then it is particularly useful to estimate
action values rather than the values

I with a model, value function is sufficient to determine a policy (one
looks one step ahead an chooses the action which leads to the best
combination of reward and next state)

I without a model, this is not sufficient: one must explicitly estimate
the value of each action

I estimate Qπ(s, a), he expected return when starting in state s, taking
action a and following policy π

I its like for the value function, here as the average return starting from
state s and action a following π

I problem if π is deterministic, then some state-action pairs (s, a) will
never be visited, so we must assure continual exploration:
e.g. every state-action pair has a non-zero proability of being starting
pair
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Machine Learning 3. Monte Carlo Method

Policy improvement

is done by making the policy greedy with respect to the current value
function the greedy policy is the one that, for each s ∈ S , deterministically
chooses an action with maximal Q-value

π(s) = arg max
a

Q(s, a)

policy improvement can then be done by constructing each πk+1 as the
greedy policy with respect to Qπk

Qπk (s, πk+1(s)) = Qπk (s, arg max
a

Qπk (s, a))

= max
a

Qπk (s, a)

≥ Qπk (s, πk(s))

= V πk (s)
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Machine Learning 4. Temporal-Difference Prediction

Outline

1. Introduction

2. Dynamic Programming and Reinforcement Learning

3. Monte Carlo Method

4. Temporal-Difference Prediction

5. Partially Observable Markov Decision Processes
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Machine Learning 4. Temporal-Difference Prediction

Temporal-Difference (TD)

I Monte Carlo uses actual return Rt for estimating the value function:

V (st)← V (st) + α [Rt − V (st)]

I The simplest TD method, TD(0), uses instead an estimate of the
return:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

I if V (st+1) were correct, this would be like dynamic programming
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Machine Learning 4. Temporal-Difference Prediction

TD Learning Algorithm
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[SB98, fig. 6.1]



Machine Learning 4. Temporal-Difference Prediction

Advantages

I No model of the environment

I TD only needs experience with the environment

I Online, incremental learning:

I can learn before knowing the final outcome
I less memory required

I both TD and MC converge, but TD usually learns faster

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 25



Machine Learning 4. Temporal-Difference Prediction

Advantages

I No model of the environment

I TD only needs experience with the environment

I Online, incremental learning:

I can learn before knowing the final outcome
I less memory required

I both TD and MC converge, but TD usually learns faster

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 25



Machine Learning 4. Temporal-Difference Prediction

Advantages

I No model of the environment

I TD only needs experience with the environment

I Online, incremental learning:

I can learn before knowing the final outcome
I less memory required

I both TD and MC converge, but TD usually learns faster

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 25



Machine Learning 4. Temporal-Difference Prediction

Advantages

I No model of the environment

I TD only needs experience with the environment

I Online, incremental learning:

I can learn before knowing the final outcome
I less memory required

I both TD and MC converge, but TD usually learns faster

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 25



Machine Learning 4. Temporal-Difference Prediction

Advantages

I No model of the environment

I TD only needs experience with the environment

I Online, incremental learning:

I can learn before knowing the final outcome

I less memory required

I both TD and MC converge, but TD usually learns faster

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 25



Machine Learning 4. Temporal-Difference Prediction

Advantages

I No model of the environment

I TD only needs experience with the environment

I Online, incremental learning:

I can learn before knowing the final outcome
I less memory required

I both TD and MC converge, but TD usually learns faster

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 25



Machine Learning 4. Temporal-Difference Prediction

Advantages

I No model of the environment

I TD only needs experience with the environment

I Online, incremental learning:

I can learn before knowing the final outcome
I less memory required

I both TD and MC converge, but TD usually learns faster

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 25



Machine Learning 5. Partially Observable Markov Decision Processes

Outline
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Machine Learning 5. Partially Observable Markov Decision Processes

brief overview of POMDPs

I like MDP but agent does not have fully knowledge about the
environment

I what distinguishes a POMDP from a MDP is that the agent perceives
an observation o ∈ Ω, instead of observing s ′ directly

I we want to find a mapping from probability distrinutions (over states)
to actions

I a probability distributions over state are called belief states b and
the entire probability space the belief space

I so agent needs to update its belief upon taking action a and
observation o, b′ = τ(b, a, o), wth τ belief state transition function
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Machine Learning 5. Partially Observable Markov Decision Processes

Policy and Value Function

I policy π and action a = π(b) for any belief, b0 initial belief state

I expected Reward for policy π is

V π(b0) =
∞∑
t=0

γtr(bt , at) =
∞∑
t=0

γtE
{
R(st , at) | b0, π

}
I optimal policy

π∗ = arg max
pi

V π(b0)

I optimal value function

V ∗(b) = max
a

[
r(b, a) + γ

∑
o∈O

Ω(o | b, a)V ∗(τ(b, a, o))

]
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Machine Learning

Further Readings

I [SB98, chapter 5,6,7].

I [WvO12].
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