Machine Learning
 Exercise Sheet 1

Prof. Dr. Dr. Lars Schmidt-Thieme, Martin Wistuba
Information Systems and Machine Learning Lab
University of Hildesheim

October 27th, 2015
Submission until November 3rd, 13.00 to wistuba@ismll.de

Exercise 1: R-Tutorial 1 (3 Punkte)

Install R:http://www.r-project.org/
Download „An Introduction to R" http://cran.r-project.org/doc/manuals/R-intro. pdf. Read Chapter 1 and reproduce the sample session in Appendix A (page 82). Create a screenshot during the session and add it to your solution.

Exercise 2: Linear Regression (7 Punkte)

a) Given are the data instances of the example from the lecture (gas consumption):

$$
\mathcal{D}=\{(2,6),(6,5),(8,4.5)\}
$$

Estimate the target $\hat{y}(x)=\hat{\beta}_{0}+\hat{\beta}_{1} x$ for $x=10$ using the method of least squares. The true value is $y=2$. Estimate the error. Interpret the result. Create a plot of all distances and show for each data point the least square error.
b) In the lecture was proven for the simple linear regression that

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

minimizes the residual sums of squares (RSS).
Reconsider the proof and provide intermediate steps for the partial derivative.
Setting the derivative to zero is a necessary criterion for the existence of an extremum. Justify that the given solution is a global minimum.
c) Find the parameters $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ by minimizing the mean squared error

$$
\mathrm{MSE}=\frac{1}{n} \sum_{i=1}^{n}(y-\hat{y}(x))^{2}
$$

using gradient descent with a learning rate $\alpha=0.01$ and initial parameters $\hat{\beta}_{0}=6$ and $\hat{\beta}_{1}=-0.5$ for two iterations. Compute the MSE after each parameter update.

