Machine Learning Exercise Sheet 11

Prof. Dr. Dr. Lars Schmidt-Thieme, Martin Wistuba
Information Systems and Machine Learning Lab
University of Hildesheim

January 26th, 2016
Submission until February 2nd, 13.00 to wistuba @ismll.de

Exercise 21: Learning PCA with Gradient Descent (5 Points)

Principal Component Analysis (PCA) is a dimensionality reduction technique which aims at projecting a data set $X \in \mathbb{R}^{N \times M}$ via latent principal components $V \in \mathbb{R}^{K \times M}$ for $K \ll M$. The procedure aims at learning both the latent components and a linear combinations of the components via weights $Z \in \mathbb{R}^{N \times K}$, such that the original data is approximated via the following loss L :

$$
\begin{equation*}
\underset{Z, V}{\operatorname{argmin}} L=\|X-Z \cdot V\|^{2}=\sum_{i=1}^{N} \sum_{j=1}^{M}\left(X_{i, j}-\sum_{k=1}^{K} Z_{i, k} V_{k, j}\right)^{2} \tag{1}
\end{equation*}
$$

Another method to compute the PCA of a data set is through gradient descent, where the latent data Z and the principal components Z are updated via computing the full gradient over L, as shown in Algorithm 1.

```
Algorithm 1 Compute PCA through Gradient Descent
Require: Original Data \(X \in \mathbb{R}^{N \times M}\), Number of latent dimensions \(K\), Learning Rate \(\eta\), Number of
    epochs \(E\)
Ensure: Low-rank data \(Z \in \mathbb{R}^{N \times K}\), Principal components \(V \in \mathbb{R}^{K \times M}\)
    for \(1, \ldots, E\) do
        for \(i=1, \ldots, N j=1, \ldots, M, k=1, \ldots, K\) do
            \(V_{k, j} \leftarrow V_{k, j}-\eta \frac{\partial L}{\partial V_{k, j}}\)
            \(Z_{i, k} \leftarrow Z_{i, k}-\eta \frac{\partial L}{\partial Z_{i, k}}\)
        end for
    end for
    return \(Z, V\)
```

Derive the update rule gradients $\frac{\partial L}{\partial V_{k, j}}, \frac{\partial L}{\partial Z_{i, k}}$.

Exercise 22: Dimensionality Reduction with PCA (5 Points)

a) R contains the very famous Iris data set. You can access it using the variable iris. Create a scatter plot for two arbitrary dimensions that shows the distribution of the three different species.
b) Reduce the predictor matrix X (these are all columns but Species) to two dimensions. Create a scatter plot as in a) for the reduced dimension.

