Machine Learning Exercise Sheet 8

Prof. Dr. Dr. Lars Schmidt-Thieme, Martin Wistuba Information Systems and Machine Learning Lab University of Hildesheim

December 15th, 2015 Submission until January 5th, 13.00 to wistuba@ismll.de

Exercise 15: Perceptron (6 Points)

a)

x_1	x_2	x_3	class
4	3	7	negative
2	-3	3	positive
1	0	-3	positive
4	2	3	negative

Apply the perceptron learning algorithm until convergence on the given data. Use a step length $\alpha = 1$ and start with $\beta = 0$, $\beta_0 = 1$. Use the algorithm with a small difference: choose the training instances sequentially instead randomly (line 6).

b)

x_1	x_2	class
1	1	positive
1	-1	negative
-1	-1	positive
-1	1	negative

Show that the problem given in the table above cannot be solved with a single perceptron. No graphical solutions.

Hint: Use a perceptron with the same settings as in part a).

Exercise 16: SVM (4 Points)

D	a	b	c	d	e	f	g	h	i
x	-3	-2	-1	-0.5	0	0.5	1	2	3
Class	-1	-1	+1	+1	+1	+1	+1	-1	-1

a)

- 1. Which shape does a hyperplane have in the 1-dimensional space? Which in the 2-dimensional, which in the 3-dimensional space?
- 2. Plot the data D.
- 3. Is the data D linear separable? If it is linear separable add a separating hyperplane to your plot.

b) Given is the mapping function $h : \mathbb{R} \to \mathbb{R}^2$:

$$h(x) = \left(\begin{array}{c} x\\ x^2 \end{array}\right)$$

- 1. Apply h to the data D.
- 2. Plot the transformed data.
- 3. Add a separating hyperplane to the plot to show that the data is linear separable in the transformed space.
- 4. Add the separating hyperplane of the transformed space to the plot in a). Explain how you estimated it.