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Machine Learning 1. The Classification Problem

The Classification Problem

Example: classifying iris plants
(Anderson 1935).

150 iris plants (50 of each species):

I species: setosa, versicolor,
virginica

I length and width of sepals (in
cm)

I length and width of petals (in
cm)

iris setosa

iris versicolor

iris virginica

See iris species database
(http://www.badbear.com/signa).
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Machine Learning 1. The Classification Problem

The Classification Problem

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.10 3.50 1.40 0.20 setosa
2 4.90 3.00 1.40 0.20 setosa
3 4.70 3.20 1.30 0.20 setosa
...

...
...

...
...

51 7.00 3.20 4.70 1.40 versicolor
52 6.40 3.20 4.50 1.50 versicolor
53 6.90 3.10 4.90 1.50 versicolor

...
...

...
...

...
101 6.30 3.30 6.00 2.50 virginica

...
...

...
...

...
150 5.90 3.00 5.10 1.80 virginica
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Machine Learning 1. The Classification Problem

The Classification Problem
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Machine Learning 1. The Classification Problem

The Classification Problem
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Machine Learning 1. The Classification Problem

Binary Classification

Lets start simple and consider two classes only. Lets say our target Y is
Y := {0, 1}.
Given

I a set Dtrain := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ RM × Y called
training data,

we want to estimate a model ŷ(x) s.t. for a set Dtest ⊆ RM × Y called
test set the test error

err(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

I (y 6= ŷ(x))

is minimal.
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Note: Dtest has (i) to be from the same data generating process and (ii) not to be available
during training.



Machine Learning 2. Logistic Regression
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Machine Learning 2. Logistic Regression

Binary Classification with Linear Regression
One idea could be to optimize the linear regression model

Y = 〈X , β〉+ ε

for RSS.
This has several problems

I It is not suited for predicting y as it can assume all kinds of
intermediate values.

I It is a optimized for the wrong loss.
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Machine Learning 2. Logistic Regression

Binary Classification with Linear Regression

Instead of predicting Y directly, we predict

p(Y = 1|X ; β̂), the probability of Y being 1 knowing X .

But linear regression is also not suited for predicting probabilities, as its
predicted values are principially unbounded.

Use a trick and transform the unbounded target by a function that forces
it into the unit interval [0, 1]
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Machine Learning 2. Logistic Regression

Logistic Function

Logistic function:

logistic(x) :=
ex

1 + ex
=

1

1 + e−x

The logistic function is a function
that

I has values between 0 and 1,
I converges to 1 when

approaching +∞,
I converges to 0 when

approaching −∞,
I is smooth and symmetric at

(0, 0.5).
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Machine Learning 2. Logistic Regression

Maximum Likelihood Estimator
Logistic regression model:

p(Y = 1 |X ; β̂) = logistic(〈X , β̂〉) + ε =
e
∑n

i=1 β̂iXi

1 + e
∑n

i=1 β̂iXi

+ ε

As fit criterium, the likelihood is used.

As Y is binary, it has a Bernoulli distribution:

Y |X = Bernoulli(p(Y = 1 |X ))

Thus, the conditional likelihood function is:

Lcond
D (β̂) =

n∏
i=1

p(Y = yi |X = xi ; β̂)

=
n∏

i=1

p(Y = 1 |X = xi ; β̂)yi (1− p(Y = 1 |X = xi ; β̂))1−yi
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Machine Learning 2. Logistic Regression

Estimating Model Parameters

The last step is to estimate the model parameter β̂.

This will be done by maximizing the conditional likelihood function Lcond
D

which is in this case equivalent to maximizing the log likelihood log(Lcond
D ).

This can be done with any optimization technique, we will have a closer
look at

I Gradient Ascent

I Newton
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Machine Learning 2. Logistic Regression 2.1. Logistic Regression with Gradient Ascent

Gradient Ascent

1: procedure
maximize-GA(f : RN → R, β0 ∈ RN , α, tmax ∈ N, ε ∈ R+)

2: for t = 1, . . . , tmax do
3: β(t) := β(t−1) + α · ∂f∂β (β(t−1))

4: if f (β(t))− f (β(t−1)) < ε then
5: return β(t)

6: error ”not converged in tmax iterations”

For maximizing function f instead of minimizing it, we need to follow the
positive direction of the gradient.
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Machine Learning 2. Logistic Regression 2.1. Logistic Regression with Gradient Ascent

Gradient Ascent for the Loglikelihood

log Lcond
D (β̂) =

n∑
i=1

yi log pi + (1− yi ) log(1− pi )

=
n∑

i=1

yi log(
e〈xi ,β̂〉

1 + e〈xi ,β̂〉
) + (1− yi ) log(1− e〈xi ,β̂〉

1 + e〈xi ,β̂〉
)

=
n∑

i=1

yi (〈xi , β̂〉 − log(1 + e〈xi ,β̂〉)) + (1− yi ) log(
1

1 + e〈xi ,β̂〉
)

=
n∑

i=1

yi (〈xi , β̂〉 − log(1 + e〈xi ,β̂〉)) + (1− yi )(− log(1 + e〈xi ,β̂〉))

=
n∑

i=1

yi 〈xi , β̂〉 − log(1 + e〈xi ,β̂〉)
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Machine Learning 2. Logistic Regression 2.1. Logistic Regression with Gradient Ascent

Gradient Ascent for the Loglikelihood

log Lcond
D (β̂) =

n∑
i=1

yi 〈xi , β̂〉 − log(1 + e〈xi ,β̂〉)

∂ log Lcond
D (β̂)

∂β̂
=

n∑
i=1

yixi −
1

1 + e〈xi ,β̂〉
e〈xi ,β̂〉xi

=
n∑

i=1

xi (yi − p(Y = 1 |X = xi ; β̂))

=XT (y − p)

p :=

 p(Y = 1 |X = x1; β̂)
...

p(Y = 1 |X = xn; β̂)
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Machine Learning 2. Logistic Regression 2.1. Logistic Regression with Gradient Ascent

Gradient Ascent for the Loglikelihood

1: procedure Log-Regr-
GA(Lcond

D : RP+1 → R, β̂(0) ∈ RP+1, α, tmax ∈ N, ε ∈ R+)
2: for t = 1, . . . , tmax do
3: β̂(t) := β̂(t−1) + α · XT (y − p)
4: if Lcond

D (β̂(t−1))− Lcond
D (β̂(t))) < ε then

5: return β̂(t)

6: error ”not converged in tmax iterations”
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Newton Algorithm

Given a function f : Rp → R, find β with minimal f (β).

The Newton algorithm is based on a quadratic Taylor expansion of f
around xn:

Fn(β) := f (βn) + 〈∂f
∂β

(βn), β − βn〉+
1

2
〈β − βn,

∂2f

∂β∂βT
(βn)(β − βn)〉

and minimizes this approximation in each step, i.e.,

∂Fn
∂β

(βn+1)
!

= 0
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Newton Algorithm

Computing the derivative of the Taylor approximation with respect to x
yields:

∂Fn
∂β

(β) =
∂f

∂β
(βn) +

∂2f

∂β∂βT
(βn)(β − βn)

which leads to the Newton update:

βn+1 = βn −
(

∂2f

∂β∂βT
(βn)

)−1
∂f

∂β
(βn)

This requires inversion of the Hessian Matrix.
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Newton Algorithm
1: procedure

minimize-Newton(f : RN → R, β(0) ∈ RN , α, tmax ∈ N, ε ∈ R+)
2: for t = 1, . . . , tmax do
3: β(t) := β(t−1) − αH−1∇βf
4: if f (β(t−1))− f (β(t)) < ε then
5: return β(t)

6: error ”not converged in tmax iterations”

β(0) start value

α (fixed) step length / learning rate

tmax maximal number of iterations

ε minimum stepwise improvement

H ∈ RN×N Hessian matrix, Hi ,j = ∂2f
∂βi∂βj

∇βf ∈ RN (∇βf )i = ∂
∂βi

f
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Newton Algorithm for the Loglikelihood

∂ log Lcond
D (β̂)

∂β̂
=XT (y − p)

∂2 log Lcond
D (β̂)

∂β̂∂β̂T
=XTWX

with
W := diag (〈p, 1− p〉)

and pi := P(Y = 1 |X = xi ; β̂).

Update rule for the Logistic Regression with Newton optimization:

β̂(t) := β̂(t−1) + α(XTWX )−1XT (y − p)
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Newton Algorithm for the Loglikelihood

x1 x2 y

1 1 +
3 2 +
2 2 −
0 3 −

, X :=


1 1 1
1 3 2
1 2 2
1 0 3

 , y :=


1
1
0
0

 , β̂(0) :=

 0
0
0

 , α = 1

p(0) =


0.5
0.5
0.5
0.5

 , W (0) = diag


0.25
0.25
0.25
0.25

 , XT (y − p) =

 0
1
−1


(
XTW (0)X

)−1
=

 14.55 −2.22 −5.11
−2.22 0.88 0.44
−5.11 0.44 2.22

 , β̂(1) =

 2.88
0.44
−1.77
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Visualization Logistic Regression Models

To visualize a logistic regression model, we can plot the decision boundary

p̂(Y = 1 |X ) =
1

2

and more detailed some level lines

p̂(Y = 1 |X ) = p0

e.g., for p0 = 0.25 and p0 = 0.75:

〈β̂,X 〉 = log(
p0

1− p0
)
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Decision Boundary after One Newton Step
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Decision Boundary after Two Newton Steps
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Decision Boundary after Three Newton Steps
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Machine Learning 2. Logistic Regression 2.2. Logistic Regression with Newton

Decision Boundary after Four Newton Steps
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Machine Learning 3. Multi-category Targets

Outline

1. The Classification Problem

2. Logistic Regression
2.1. Logistic Regression with Gradient Ascent
2.2. Logistic Regression with Newton

3. Multi-category Targets

4. Linear Discriminant Analysis

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 43



Machine Learning 3. Multi-category Targets

Binary vs. Multi-category Targets

Binary Targets / Binary Classification:
prediction of a nominal target variable with 2 levels/values.

Example: spam vs. non-spam.

Multi-category Targets / Multi-class Targets / Polychotomous
Classification:
prediction of a nominal target variable with more than 2 levels/values.

Example: three iris species; 10 digits; 26 letters etc.
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Machine Learning 3. Multi-category Targets

Compound vs. Monolithic Classifiers

Compound models
I built from binary submodels,
I different types of compound models employ different

sets of submodels:
I 1-vs-rest (aka 1-vs-all)
I 1-vs-last
I 1-vs-1 (Dietterich and Bakiri 1995; aka pairwise

classification)

I using error-correcting codes to combine component
models.

I also ensembles of compound models are used
(Frank and Kramer 2004).

Monolithic models (aka ”‘one machine”’ (Rifkin and Klautau 2004))
I trying to solve the multi-class target problem

intrinsically (examples: decision trees, special SVMs)
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Machine Learning 3. Multi-category Targets

Types of Compound Models

1-vs-rest: one binary classifier per class:

fy : X → [0, 1], y ∈ Y

f (x) := (
f1(x)∑

y∈Y fy (x)
, . . . ,

fk(x)∑
y∈Y fy (x)

)

1-vs-last: one binary classifier per class (but last yk):

fy : X → [0, 1], y ∈ Y , y 6= yk

f (x) := (
f1(x)

1 +
∑

y∈Y fy (x)
, . . . ,

fk−1(x)

1 +
∑

y∈Y fy (x)
,

1

1 +
∑

y∈Y fy (x)
)
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Machine Learning 3. Multi-category Targets

Polychotomous Discrimination, k target categories

1-vs-rest construction:

class 1

class 2

class 3

class 4

class 1

class 2

class 3

class 4

class 2

class 3

class 4

class 1

2−vs−rest

...

3−vs−rest

...

1−vs−rest

...

...

k classifiers trained on N cases

kN cases in total

1-vs-last construction:

class 2

class 1

class k class k class k

class k−1

2−vs−k1−vs−k (k−1)−vs−k...

k − 1 classifiers trained on approx. 2
N/k on average.

N + (k − 2)Nk cases in total
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Machine Learning 3. Multi-category Targets

Example / Iris data / Logistic Regression
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Machine Learning 3. Multi-category Targets

Example / Iris data / Logistic Regression
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Machine Learning 4. Linear Discriminant Analysis

Outline

1. The Classification Problem

2. Logistic Regression
2.1. Logistic Regression with Gradient Ascent
2.2. Logistic Regression with Newton

3. Multi-category Targets

4. Linear Discriminant Analysis
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Machine Learning 4. Linear Discriminant Analysis

Assumptions

In discriminant analysis, it is assumed that

I cases of a each class k are generated according to some probabilities

πk = p(Y = k)

and

I its predictor variables are generated by a class-specific multivariate
normal distribution

X |Y = k ∼ N (µk ,Σk)

i.e.

pk(x) :=
1

(2π)
d
2 |Σk |

1
2

e−
1
2
〈x−µk ,Σ−1

k (x−µk )〉
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Machine Learning 4. Linear Discriminant Analysis

Decision Rule
Discriminant analysis predicts as follows:

Ŷ |(X = x) := arg max
k

πkpk(x) = arg max
k

δk(x)

with the discriminant functions

δk(x) := log(πkpk) = −1

2
log |Σk | −

1

2
〈x − µk ,Σ−1

k (x − µk)〉+ log πk

Here,
〈x − µk ,Σ−1

k (x − µk)〉
is called the Mahalanobis distance of x and µk .

Thus, discriminant analysis can be described as prototype method, where

I each class k is represented by a prototype µk and
I cases are assigned the class with the nearest (with respect to

Mahalanobis distance) prototype.
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Machine Learning 4. Linear Discriminant Analysis

Maximum Likelihood Parameter Estimates
The maximum likelihood parameter estimates are as follows:

n̂k :=
n∑

i=1

I (yi = k), with I (x = y) :=

{
1, if x = y
0, else

π̂k :=
n̂k
n

µ̂k :=
1

n̂k

∑
i :yi=k

xi

Σ̂k :=
1

n̂k

∑
i :yi=k

(xi − µ̂k)(xi − µ̂k)T
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Machine Learning 4. Linear Discriminant Analysis

QDA vs. LDA
In the general case, decision boundaries are quadratic due to the quadratic
occurrence of x in the Mahalanobis distance. This is called quadratic
discriminant analysis (QDA).

If we assume that all classes share the same covariance matrix, i.e.,

Σk = Σk ′ ∀k, k ′

then this quadratic term is canceled and the decision boundaries become
linear. This model is called linear discriminant analysis (LDA).

The maximum likelihood estimator for the common covariance matrix in
LDA is

Σ̂ :=
∑
k

n̂k
n

Σ̂k
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Machine Learning 4. Linear Discriminant Analysis

Example / Iris data / LDA
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Machine Learning 4. Linear Discriminant Analysis

Example / Iris data / QDA
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Machine Learning 4. Linear Discriminant Analysis

Example / Iris data / LDA
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Machine Learning 4. Linear Discriminant Analysis

Example / Iris data / QDA
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Machine Learning 4. Linear Discriminant Analysis

LDA coordinates

The variance matrix estimated by LDA can be used to linearly transform
the data s.t. the Mahalanobis distance

dM(x , y) = 〈x , Σ̂−1y〉 = xT Σ̂−1y

becomes the standard Euclidean distance in the transformed coordinates

〈x ′, y ′〉 = x ′
T
y ′

This is accomplished by decomposing Σ̂ as

Σ̂ = UDUT

with an orthonormal matrix U (i.e., UT = U−1) and a diagonal matrix D
and setting

x ′ := D−
1
2UT x
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Machine Learning 4. Linear Discriminant Analysis

Example / Iris data / LDA coordinates
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Machine Learning 4. Linear Discriminant Analysis

LDA vs. Logistic Regression
LDA and logistic regression use the same underlying linear model.

For LDA:

log(
P(Y = 1|X = x)

P(Y = 0|X = x)
)

= log(
π1

π0
)− 1

2
〈µ0 + µ1,Σ

−1(µ1 − µ0)〉+ 〈x ,Σ−1(µ1 − µ0)〉

= α0 + 〈α, x〉

For logistic regression by definition we have:

log(
P(Y = 1|X = x)

P(Y = 0|X = x)
) =β0 + 〈β, x〉
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Machine Learning 4. Linear Discriminant Analysis

LDA vs. Logistic Regression
Both models differ in the way they estimate the parameters.

LDA maximizes the complete likelihood:∏
i

p(xi , yi ) =
∏
i

p(xi | yi )︸ ︷︷ ︸
∏
i

p(yi )︸ ︷︷ ︸
normal pk bernoulli πk

While logistic regression maximizes the conditional likelihood only:∏
i

p(xi , yi ) =
∏
i

p(yi | xi )︸ ︷︷ ︸
∏
i

p(xi )︸ ︷︷ ︸
logistic ignored
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Machine Learning 4. Linear Discriminant Analysis

Summary

I For classification, logistic regression models of type

Y = e〈X ,β〉

1+e〈X ,β〉
+ ε can be used to predict a binary Y based on several

(quantitative) X .

I The maximum likelihood estimates (MLE) can be computed using
Gradient Ascent or Newton’s algorithm on the loglikelihood.

I Another simple classification model is linear discriminant analysis
(LDA) that assumes that the cases of each class have been generated
by a multivariate normal distribution with class-specific means µk
(the class prototype) and a common covariance matrix Σ.

I The maximum likelihood parameter estimates π̂k , µ̂k , Σ̂ for LDA are
just the sample estimates.

I Logistic regression and LDA share the same underlying linear model,
but logistic regression optimizes the conditional likelihood, LDA the
complete likelihood.
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Machine Learning

Further Readings

I [JWHT13, chapter 3], [Mur12, chapter 7], [HTFF05, chapter 3].
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Machine Learning
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