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Machine Learning

High-Dimensional Data

High-dimensional data occurs in different situations:
1. Data that comes naturally with many predictors.

» e.g., text classification
(# predictors = # words in the bag-of-words representation, e.g.,
30.000)

2. Models that extract many predictor variables from objects to classify.

» variable interactions
» derived variables
» complex objects such as graphs, texts, etc.

» Situation 1 often really is a special case of this one.

3. Data with few examples compared to the number of variables
(“small n, large p").
» gene expression / microarray data
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Machine Learning 1. Variable Interactions and Polynomial Models

B
Need for higher orders “

Assume a target variable does not
depend linearly on a predictor
variable, but say quadratic.

Example: way length vs. duration of . °
a moving object with constant h .
acceleration a. o
1 o
s(t) = zat® + ¢
2 .
Can we catch such a dependency? .. o

Can we catch it with a linear
model?
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Machine Learning 1. Variable Interactions and Polynomial Models

. N
Need for general transformations “

To describe many phenomena, even more complex functions of the input
variables are needed.

Example: the number of cells n vs. duration of growth ¢:

n=pe* +e
n does not depend on t directly, but on e** (with a known ).
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Machine Learning 1. Variable Interactions and Polynomial Models

) : : P2
Need for variable interactions v

In a linear model with two predictors

Y = B0+ B1 X1+ B2 Xo + €
Y depends on both, X; and X,.

But changes in Xi will affect Y the same way, regardless of X5.

Consider the way length s of a moving object with velocity v and duration
t: the way length s of a moving object vs. its constant velocity v and
duration t:

s=vt+e

» additional 1s duration will change the way length not in a uniform way
» high impact for large velocities
» little impact for small velocities

v and t are said to interact: s does not depend only on each predictor
separately, but also on their product.
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Machine Learning 1. Variable Interactions and Polynomial Models

. ) P2
Derived variables v
All these cases can be handled by looking at derived variables, i.e., instead of

Y :ﬂo + 51X12 +€

Y =B+ 1€ + ¢

Y =80+ 1X1- Xo +¢€

one looks at
Y =60+ /i X{ + e
with
X{ :=X{
X{ :=e*®
X{ :=X1- Xz

Derived variables are computed before the fitting process and taken into account
either additional to the original variables or instead of.
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Machine Learning 1. Variable Interactions and Polynomial Models

Polynomial Models

Polynomial models of degree d take into account systematically all
interactions of d different variables (including powers up to degree d):

M
§(x) :==bo + Z BmXm degree 1
m=1
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) P2
Polynomial Models “
Polynomial models of degree d take into account systematically all
interactions of d different variables (including powers up to degree d):

M
)A/(X) ::BAO + Z Bmxm
m=1

degree 1
M M M
y(x) :=Po + Z Bmxm + Z Z Bm,1Xmxi degree 2
m=1 m=1/=m
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) P2
Polynomial Models “
Polynomial models of degree d take into account systematically all
interactions of d different variables (including powers up to degree d):

M
)A/(X) ::BAO + Z Bmxm
m=1

degree 1
M M M
y(x) :=Po + Z Bmxm + Z Z Bm,1Xmxi degree 2
m=1 m=1/=m
M M M
)A/(X) =00 + Z BmXm + Z Z Bm,IXmXI + -
m=1 m=1/|=m
M M M
+ Z Z T Z Omy,mo,....mgXm Xmy -+ Xm, degree d
m=1my=m mg=mgy_1
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Machine Learning 1. Variable Interactions and Polynomial Models

High Polynomial Degress, High Model Complexity
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If a model does not well explain the data,

e.g., if the true model is quadratic, but we try to fit a linear model,
one says, the model underfits.
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High Polynomial Degress, High Model Complexity
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Machine Learning 1. Variable Interactions and Polynomial Models

NN
High Polynomial Degress, High Model Complexity “
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Machine Learning 1. Variable Interactions and Polynomial Models

NN
High Polynomial Degress, High Model Complexity “
If to data

(Xla.yl)v (X27y2)7 L) (men)
consisting of n points we fit

y = Bo+ Bix+ Bax® + -+ Baix™ L (1)

i.e., a polynomial with degree n — 1, then this results in an interpolation of
the data points

(if there are no repeated measurements, i.e., points with the same value of

x.

As the polynomial

909 = 3 n 12
=1 j#i
is of this type, and has minimal RSS = 0.
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Machine Learning 2. Variable Selection via Forward and Backward Search

NN
The Variable Selection Problem v

Given a data set Dt2in C RM x ),
an error measure err,
a model class with a learning algorithm A4,

find the subset V C {1,2,... M} of (relevant) variables s.t. the model
§ = A(my (D)
learned on this subset V is best, i.e., for new test data DSt it's test error
err(§, DY),
is minimal.
Projection onto predictors V:
v (X, y) = (Xips Xigs s X, ), for Vo= {in, o, ..o yigy}
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Machine Learning 2. Variable Selection via Forward and Backward Search

NN
Greedy Search “

v

All 2M subsets are too many to test (for larger M).

v

Use a simple greedy search.

v

forward search:
» start with no variables.
» test adding one more variable not yet in the model.
» add the one leading to lowest validation error.

\4

backward search:
» start with all variables.
> test removing one more variable still in the model.
» remove the one leading to lowest validation error.

v

Does not guarantee to find the best variables subset.
(But usually finds a useful one.)

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 29



Machine Learning 2. Variable Selection via Forward and Backward Search

M
Forward Search v

1: procedure SELECTVARS-FORWARD(D" C RM x Y err, A)
2: ('Dtrain,'DvaI) - spIit(D"ai"’)

3 V=0 )

4 Eallbest := err(A(my (D)), (DY)

5: Vbest = 1

6: while st # 0 do

7 Vbest := 0

8 €best ‘= Eallbest

9 for ve{l,2,...,M}\ V do
10 Vi:=VvuU{v}

11 7 = A(my, (D))

12 e :=err(y, my (DY)
13: if e < epest then

14: Vbest 1= V

15: Ehest 1= €

16 if epest < €allbest then

17 V=V U{Vest}

18 €allbest ‘= Cbest

19: return V
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Machine Learning 2. Variable Selection via Forward and Backward Search

M
Backward Search v

1: procedure SELECTVARS-BACKWARD(DY2" C RM x ) err, A)
2: ('Dtrain,'DvaI) - spIit(D"ai"’)

3 V:={1,2,...,M} _

4 ealipest = err(A(my (D)), wy (D*2))

5: Vbest = 1

6: while st # 0 do

7 Vbest := 0

8 €best ‘= Eallbest

9 for v € V do

10 V= V\{v}

11 y = A(my, (D))
12 e :=err(y, my (DY)
13: if e < epest then

14: Vbest 1= V

15: Ehest 1= €

16 if epest < €allbest then

17 V= V\{voest }

18 €allbest ‘= Cbest

19: return V

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
12 / 29



Machine Learning 2. Variable Selection via Forward and Backward Search

% :

Sequential Search with Variable Importance Heuristics

» Forward and backward search has to learn many models.
» forward search: 1, 2, 3, ...
» backward search: M, M-1, M-2, ...
» Further simplication: use a sequential search.
» Use a heuristics to assess variable importance once (without
context)
» e.g., the error of the single-variable model:
imp(m) := err(A(mmy (D)), D)
» Add variables in order of increasing heuristics.
» Usually a full sequential sweep through all variables is done.
» No difference between Forward and Backward Search.
» Faster, but even less reliable than forward/backward search.
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Machine Learning 2. Variable Selection via Forward and Backward Search

NN
Sequential Search “

1: procedure SELECTVARS-SEQ(D!" C RM x Y, err, A, imp)
2: (thrain7 Dval) = Sp“t('Dtrain,)

3 V := sort-increasing({1,2,..., M},imp)
4: V=10

5 ey 1= err(A(my (D)), my (D))

6: Mpest := 1

7 form=1,...,M do

8 v:i=Vn

9: V:=Vu{v}

10: y 1= A(my/(Dim)
11: e == err(§,my (D))
12: if e < epest then
13: Mpest = M
14: Ehest (= €
15: V={1,2,..., Myest}
16: return V
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Machine Learning 3. Minimizing a Function via Coordinate Descent

Minimizing a Function via Coordinate Descent (CD)

Given a function f : RN — R, find 8 with minimal ().

» Use the coordinate axes as descent direction

» first B1-axis, then [p-axis, etc. (cyclic)
» one-dimensional subproblems:

gn(ﬁ) = argmin f(ﬁny 6—n) = argmin f(ﬁh v aﬁn—hﬁlvﬁn—}-l? .. aﬁN)

Bn€R S

» Coordinate Descent can be fast if solving the one-dimensional
subproblems can be done analytically.

» For smooth f, one needs to solve

87[(617; ﬁfn) ; 0
Bn
» Then also no step length is required !
Note: B_p :=(B1,...,82,---,Bn=1,Bn+1,---,Bn) is the vector without the n-th element

for a vector 3 € RV,
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Machine Learning 3. Minimizing a Function via Coordinate Descent

Coordinate Descent

1: procedure

MINIMIZE-CD(f : RN = R, g, 80 € RV . € N, e € RT)
for i :=1,...,inax do
B .= 5(1—1)

forn:=1,...,N do
1(7’) = gn(ﬁ%)
if F(B0-1) —f(B317) < € then
return 3()
error "not converged in inax iterations”

g solves g, for the n-th one-dimensional subproblem

'7ﬁn—17/8n+1> <o 75N) - argmm f(ﬁla s 7Bn—1)6/7/8n+17' x

B’eR

aBN)
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Machine Learning 3. Minimizing a Function via Coordinate Descent

Example: Simple Quadratic Function
Minimize

f(B1,B2) == B2 + B3 + 152

One dimensional problem for 3;:

f(B1; B2) =PBF + B3 + B152

of
0B

(B1: B2) =281 + B2 =0
~ B = —%ﬁz

. 1
e, gi1(B2) = —552
and analogous for 35:

&(b1) = —%51
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Machine Learning 3. Minimizing a Function via Coordinate Descent
Example: Simple Quadratic Function A
Minimize
F(B1,B2) == B3 + B3 + BrB2, B9 = (L,1)
g1(f2) == —%/52, g(f1) = —%/5’1

i B pefore
1 (1,1)

gn(B1))  BU-1) after
—1/2  (-1/2,1)

N RN =S

(-1/2,1) 1/4 (=1/2,1/4)
2 (-1/2,1/4) 1 -1/8  (-1/8,1/4)
(-1/8,1/4) 2 1/16  (—1/8,1/16)

Note: Minimize f(B1, 82) := 2 + B2 via CD yourself. What is different? Why?
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Machine Learning 3. Minimizing a Function via Coordinate Descent

Learn Linear Regression via CD

Minimize
F(B) = lly = XBII> < BTXTX3 — 2y T X3
f(ﬁ,\m; Bfm) = Xr;’;XmB?n + ZBImX_TmeBm + BImX—Tmemem
- 2yTXm/3m - 2}/T)<—m6,\—m
X XrZJ—XmBIZn - 2(y - Xmefm)TXmBm
5 _ (y - X—mB—m)TXm

Of (Bmi B-m) 1+
Tk, T

Note: xm := X.,m denotes the m-th column of X,

X_m denotes the matrix X without column m.
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Machine Learning 3. Minimizing a Function via Coordinate Descent

Learn Linear Regression via CD

1: procedure LEARN-LINREG-
CD(Dtram = {(Xlayl)) ] (XN7yN)}7 imax € N7 €€ R+)
T

2: X = (x1,x2,...,XN)

3 -),/\ ()/1>Y2,...,yN)T

4 fo:=(0,...,0) A A

. A= smnwize-CD( £(3) = (y = X3)T(y  XD).
g(ﬁm;é—m) = %
507 imax,E)

6: return B

Note: xm := X.,m denotes the m-th column of X,
X_m denotes the matrix X without column m.
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Machine Learning 4. L1 Regularization / The Lasso

B
L1 Regularization “

Let X be the predictor matrix and y the target vector,
BA the model parameters,
¥ the model predictions and
¢ the loss/error.

L2 regularization:

P

F(B) =ty 9B, X))+ AlBIE = .. +A)_ 55

p
p=1

L1 regularization:
P
F(B) =0y, 9 (B, XN+ AlBllr = ...+ AD_ 15|
p=1
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Machine Learning 4. L1 Regularization / The Lasso

Why L1 Regularization?

min. £(3) := &y, (B, X)) +\||5|)x
BeRrP

is equivalent to

min. f(ﬁ) = f(y,f/(BaX))

HBHl <B

B eRrP
with

B :=[|5*|l1

Note: /3’* denotes the optimal parameters. Thus this equivalence provides insight, but

cannot (yet) be used to solve the problem.
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Machine Learning 4. L1 Regularization / The Lasso

B
Why L1 Regularization? “

min. £(3) := £y, 9(B, X)) +A||3]l,  min. f(B) ==y, 9(B, X)) +A||5]3
BeRrP B eRP

is equivalent to

min. £(3) := £y, 9(B, X))

is equivalent to

min. f(B) = E(y,f/(BaX))

16ll: < B 18|13 < B

B eRP B eRP
with with

B :=||5*|h B =153

Note: /3’* denotes the optimal parameters. Thus this equivalence provides insight, but

cannot (yet) be used to solve the problem.
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Machine Learning 4. L1 Regularization / The Lasso

Why L1 Regularization? A ;

B>

B

source: [HTFFO5, p. 90]

o = E E[= DA
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Machine Learning 4. L1 Regularization / The Lasso
. . . N
Regularized Linear Regression “

Let X the predictor matrix and y the target vector

B the linear regression model parameters,
= X3 the linear regression model predictions and

Vv
(v,9) := |ly — 9|3 the RSS loss/error.

L2 Regularized Linear Regression (Ridge Regression):
F(B) = €(y, 9(5, X)) + AlIBI13
o BTXTXG —2yTXB+ABTS
= AT(XT + A21)(X + A1) —2yTXP

» L2 regularized problem has same structure as unregularized one

» All learning algorithms work seamlessly.
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Machine Learning 4. L1 Regularization / The Lasso

Regularized Linear Regression

Let X the predictor matrix and y the target vector,
/3 the linear regression model parameters,
V= X3 the linear regression model predictions and
Uy, 9) :=|ly — 9||3 the RSS loss/error.

L1 regularized Linear Regression (Lasso):

F(B) ==Ly, 9) + AlBlIL

M
x BTXTXB =2y TXB+ XY [Bml

m=1

» L1 regularized problem has new terms |5p|.
» Esp. non-differentiable at 0.

» All learning algorithms seen so far do not work.
» Solving SLE is not applicable.
» Gradient Descent does not work.
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Machine Learning 4. L1 Regularization / The Lasso

Hard & Soft Thresholding

hard(x, €) :=

if [x| > €

else

f(x)

7’
4
4
7’
4

7’
4

—€ P € X

4
7’
7’
d
7’
4
7’
7’
4
X — €, if x>e€
soft(x,€) := ¢ 0, if [x] <e

X + €, if x < —e
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Machine Learning 4. L1 Regularization / The Lasso

B
Coordinate Gradient for L1 Regularized Linear Regressioﬁ

M
F(B) :=BTXTXB—2yTXB +AD |8l

m=1

F(Bmi B-m) o< X xm 32 — 2(y — X_mB-m) " XmBm +X|Bm|

of Am; A—m 5 —Xm Afm T m -2 N
8/8m Xme
. — XemBem) T Xm AN .
m = (y fTX) a s ) Bm <0
A (y - Xmefm)TXm %)‘
~ Bm = soft( . , X,IXm)

Note: LASSO = Least Absolute Selection and Shrinkage Operator.
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Machine Learning 4. L1 Regularization / The Lasso

B
Learn L1-regularized Linear Regression via CD (Shootiné
Algorithm)

1: procedure LEARN-LINREG-L1REG-
CD(DM := {(x1,y1),-- -, (Xns Yn) }s A € R imax € Ny e € RT)
T

2: X = (X1,X2,...,XN)
3: X'_ (yl,yg,...,yN)
4: @ ( ,0) .
5. (= MINMIZE-CD( () == (v — XB) T (y — XB) + |||,
() = soft(V=gm om0
R BOvOéﬂlmax,f)
6: return

Note: xm := X.,m denotes the m-th column of X,

X_m denotes the matrix X without column m.
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Machine Learning 4. L1 Regularization / The Lasso

NN
Regularization Paths “

L2 regularization L1 regularization
0.6 : ! ! ! ! )
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02t 4 03f
01} o2 weeeﬁ, 02r
6 P 01f
ol
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x-axis: bound B on parameter size.

-axis: parameter 6.
Y P source: [Murl2, p. 437]
=] = E El= DA
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Machine Learning 4. L1 Regularization / The Lasso

Summary

» High-dimensional data poses problems as many parameters have to
be estimated from comparable few instances

» Non-linear effects can be captured by derived predictor variables
» e.g., in polynomial models.

» making even originally low-dimensional data high-dimensional

» Relevant variables can be searched explicitly through a greedy
forward search and backward search

» To minimize a function, coordinate descent cyclicly chooses the
coordinate axes as descent direction

analytically.

» efficient, if the one-dimensional subproblems can be solved
» does need no step length.

» Variable selection also can be accomplished by L1 regularization

» L1 regularized linear regression (LASSO) can be learned by
coordinate descent (shooting algorithm). - =+ -5 =
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Further Readings

» [JWHT13, chapter 6], [Murl2, chapter 13], [HTFFO05, chapter 3.3-8].

[m]

=

Dar
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