
Machine Learning

Machine Learning
A. Supervised Learning

A.4. High-Dimensional Data

Lars Schmidt-Thieme, Nicolas Schilling

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 29

Machine Learning

Outline

1. Variable Interactions and Polynomial Models

2. Variable Selection via Forward and Backward Search

3. Minimizing a Function via Coordinate Descent

4. L1 Regularization / The Lasso

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 29

Machine Learning

High-Dimensional Data

High-dimensional data occurs in different situations:

1. Data that comes naturally with many predictors.
I e.g., text classification

(# predictors = # words in the bag-of-words representation, e.g.,
30.000)

2. Models that extract many predictor variables from objects to classify.
I variable interactions
I derived variables
I complex objects such as graphs, texts, etc.

I Situation 1 often really is a special case of this one.

3. Data with few examples compared to the number of variables
(“small n, large p”).

I gene expression / microarray data

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

Outline

1. Variable Interactions and Polynomial Models

2. Variable Selection via Forward and Backward Search

3. Minimizing a Function via Coordinate Descent

4. L1 Regularization / The Lasso

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

Need for higher orders

Assume a target variable does not
depend linearly on a predictor
variable, but say quadratic.

Example: way length vs. duration of
a moving object with constant
acceleration a.

s(t) =
1

2
at2 + ε

Can we catch such a dependency?

Can we catch it with a linear
model?

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
50

10
0

15
0

20
0

x

y

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

Need for general transformations

To describe many phenomena, even more complex functions of the input
variables are needed.

Example: the number of cells n vs. duration of growth t:

n = βeαt + ε

n does not depend on t directly, but on eαt (with a known α).

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

Need for variable interactions
In a linear model with two predictors

Y = β0 + β1X1 + β2X2 + ε

Y depends on both, X1 and X2.

But changes in X1 will affect Y the same way, regardless of X2.

Consider the way length s of a moving object with velocity v and duration
t: the way length s of a moving object vs. its constant velocity v and
duration t:

s = vt + ε

I additional 1s duration will change the way length not in a uniform way
I high impact for large velocities
I little impact for small velocities

v and t are said to interact: s does not depend only on each predictor
separately, but also on their product.

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

Derived variables
All these cases can be handled by looking at derived variables, i.e., instead of

Y =β0 + β1X
2
1 + ε

Y =β0 + β1e
αX1 + ε

Y =β0 + β1X1 · X2 + ε

one looks at

Y =β0 + β1X
′
1 + ε

with

X ′1 :=X 2
1

X ′1 :=eαX1

X ′1 :=X1 · X2

Derived variables are computed before the fitting process and taken into account

either additional to the original variables or instead of.
Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

Polynomial Models
Polynomial models of degree d take into account systematically all
interactions of d different variables (including powers up to degree d):

ŷ(x) :=β̂0 +
M∑

m=1

β̂mxm degree 1

ŷ(x) :=β̂0 +
M∑

m=1

β̂mxm +
M∑

m=1

M∑
l=m

β̂m,lxmxl degree 2

ŷ(x) :=β̂0 +
M∑

m=1

β̂mxm +
M∑

m=1

M∑
l=m

β̂m,lxmxl + · · ·

+
M∑

m1=1

M∑
m2=m1

· · ·
M∑

md=md−1

θ̂m1,m2,...,md
xm1xm2 · · · xmd

degree d

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

Polynomial Models
Polynomial models of degree d take into account systematically all
interactions of d different variables (including powers up to degree d):

ŷ(x) :=β̂0 +
M∑

m=1

β̂mxm degree 1

ŷ(x) :=β̂0 +
M∑

m=1

β̂mxm +
M∑

m=1

M∑
l=m

β̂m,lxmxl degree 2

ŷ(x) :=β̂0 +
M∑

m=1

β̂mxm +
M∑

m=1

M∑
l=m

β̂m,lxmxl + · · ·

+
M∑

m1=1

M∑
m2=m1

· · ·
M∑

md=md−1

θ̂m1,m2,...,md
xm1xm2 · · · xmd

degree d

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

Polynomial Models
Polynomial models of degree d take into account systematically all
interactions of d different variables (including powers up to degree d):

ŷ(x) :=β̂0 +
M∑

m=1

β̂mxm degree 1

ŷ(x) :=β̂0 +
M∑

m=1

β̂mxm +
M∑

m=1

M∑
l=m

β̂m,lxmxl degree 2

ŷ(x) :=β̂0 +
M∑

m=1

β̂mxm +
M∑

m=1

M∑
l=m

β̂m,lxmxl + · · ·

+
M∑

m1=1

M∑
m2=m1

· · ·
M∑

md=md−1

θ̂m1,m2,...,md
xm1xm2 · · · xmd

degree d

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

High Polynomial Degress, High Model Complexity

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
50

10
0

20
0

x

y

● data
model

If a model does not well explain the data,
e.g., if the true model is quadratic, but we try to fit a linear model,
one says, the model underfits.

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

High Polynomial Degress, High Model Complexity

●

●

●

●
●

●
●

●

●

●

0 2 4 6 8

0
2

4
6

8

x

y

● data
model

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

High Polynomial Degress, High Model Complexity

●

●

●

●
●

●
●

●

●

●

0 2 4 6 8

0
2

4
6

8

x

y

● data
model

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

High Polynomial Degress, High Model Complexity

●

●

●

●
●

●
●

●

●

●

0 2 4 6 8

0
2

4
6

8

x

y

● data
model

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

High Polynomial Degress, High Model Complexity

●

●

●

●
●

●
●

●

●

●

0 2 4 6 8

0
2

4
6

8

x

y

● data
model

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 29

Machine Learning 1. Variable Interactions and Polynomial Models

High Polynomial Degress, High Model Complexity
If to data

(x1, y1), (x2, y2), . . . , (xn, yn)

consisting of n points we fit

y = β0 + β1x + β2x
2 + · · ·+ βn−1x

n−1 (1)

i.e., a polynomial with degree n− 1, then this results in an interpolation of
the data points
(if there are no repeated measurements, i.e., points with the same value of
x .)

As the polynomial

ŷ(x) =
n∑

i=1

yi
∏
j 6=i

x − xj
xi − xj

is of this type, and has minimal RSS = 0.
Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 29

Machine Learning 2. Variable Selection via Forward and Backward Search

Outline

1. Variable Interactions and Polynomial Models

2. Variable Selection via Forward and Backward Search

3. Minimizing a Function via Coordinate Descent

4. L1 Regularization / The Lasso

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 29

Machine Learning 2. Variable Selection via Forward and Backward Search

The Variable Selection Problem

Given a data set Dtrain ⊆ RM × Y,
an error measure err,
a model class with a learning algorithm A,

find the subset V ⊆ {1, 2, . . . ,M} of (relevant) variables s.t. the model

ŷ := A(πV (Dtrain))

learned on this subset V is best, i.e., for new test data Dtest it’s test error

err(ŷ ,Dtest),

is minimal.

Projection onto predictors V :

πV (x , y) := (xi1 , xi2 , . . . , xiM̃ , y), for V := {i1, i2, . . . , iM̃}

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 29

Machine Learning 2. Variable Selection via Forward and Backward Search

Greedy Search

I All 2M subsets are too many to test (for larger M).

I Use a simple greedy search.
I forward search:

I start with no variables.
I test adding one more variable not yet in the model.
I add the one leading to lowest validation error.

I backward search:
I start with all variables.
I test removing one more variable still in the model.
I remove the one leading to lowest validation error.

I Does not guarantee to find the best variables subset.
(But usually finds a useful one.)

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 29

Machine Learning 2. Variable Selection via Forward and Backward Search

Forward Search

1: procedure selectvars-forward(Dtrain′ ⊆ RM × Y, err,A)
2: (Dtrain,Dval) := split(Dtrain′)
3: V := ∅
4: eallbest := err(A(πV (Dtrain)), πV (Dval))
5: vbest := 1
6: while vbest 6= 0 do
7: vbest := 0
8: ebest := eallbest

9: for v ∈ {1, 2, . . . ,M} \ V do
10: V ′ := V ∪ {v}
11: ŷ := A(πV ′ (Dtrain))
12: e := err(ŷ , πV ′ (Dval))
13: if e < ebest then
14: vbest := v
15: ebest := e

16: if ebest < eallbest then
17: V := V ∪ {vbest}
18: eallbest := ebest

19: return V

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 29

Machine Learning 2. Variable Selection via Forward and Backward Search

Backward Search

1: procedure selectvars-backward(Dtrain′ ⊆ RM × Y, err,A)
2: (Dtrain,Dval) := split(Dtrain′)
3: V := {1, 2, . . . ,M}
4: eallbest := err(A(πV (Dtrain)), πV (Dval))
5: vbest := 1
6: while vbest 6= 0 do
7: vbest := 0
8: ebest := eallbest

9: for v ∈ V do
10: V ′ := V \{v}
11: ŷ := A(πV ′ (Dtrain))
12: e := err(ŷ , πV ′ (Dval))
13: if e < ebest then
14: vbest := v
15: ebest := e

16: if ebest < eallbest then
17: V := V \{vbest}
18: eallbest := ebest

19: return V

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 29

Machine Learning 2. Variable Selection via Forward and Backward Search

Sequential Search with Variable Importance Heuristics

I Forward and backward search has to learn many models.
I forward search: 1, 2, 3, . . .
I backward search: M, M-1, M-2, . . .

I Further simplication: use a sequential search.
I Use a heuristics to assess variable importance once (without

context)
I e.g., the error of the single-variable model:

imp(m) := err(A(π{m}(Dtrain)),Dval)

I Add variables in order of increasing heuristics.
I Usually a full sequential sweep through all variables is done.

I No difference between Forward and Backward Search.

I Faster, but even less reliable than forward/backward search.

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 29

Machine Learning 2. Variable Selection via Forward and Backward Search

Sequential Search

1: procedure selectvars-seq(Dtrain′ ⊆ RM × Y, err,A, imp)
2: (Dtrain,Dval) := split(Dtrain′)
3: V := sort-increasing({1, 2, . . . ,M}, imp)
4: V := ∅
5: ebest := err(A(πV (Dtrain)), πV (Dval))
6: mbest := 1
7: for m = 1, . . . ,M do
8: v := Vm
9: V := V ∪ {v}
10: ŷ := A(πV (Dtrain))
11: e := err(ŷ , πV (Dval))
12: if e < ebest then
13: mbest := m
14: ebest := e

15: V := {1, 2, . . . ,mbest}
16: return V

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 29

Machine Learning 3. Minimizing a Function via Coordinate Descent

Outline

1. Variable Interactions and Polynomial Models

2. Variable Selection via Forward and Backward Search

3. Minimizing a Function via Coordinate Descent

4. L1 Regularization / The Lasso

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 29

Machine Learning 3. Minimizing a Function via Coordinate Descent

Minimizing a Function via Coordinate Descent (CD)

Given a function f : RN → R, find β with minimal f (β).

I Use the coordinate axes as descent direction
I first β1-axis, then β2-axis, etc. (cyclic)
I one-dimensional subproblems:

gn(β) := arg min
βn∈R

f (βn;β–n) := arg min
β′∈R

f (β1, . . . , βn−1, β
′, βn+1, . . . , βN)

I Coordinate Descent can be fast if solving the one-dimensional
subproblems can be done analytically.

I For smooth f , one needs to solve

∂f (βn;β−n)

∂βn

!
= 0

I Then also no step length is required !

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 29

Note: β−n := (β1, . . . , β2, . . . , βn−1, βn+1, . . . , βN) is the vector without the n-th element
for a vector β ∈ RN .

Machine Learning 3. Minimizing a Function via Coordinate Descent

Coordinate Descent
1: procedure

minimize-CD(f : RN → R, g , β(0) ∈ RN , imax ∈ N, ε ∈ R+)
2: for i := 1, . . . , imax do
3: β(i) := β(i−1)

4: for n := 1, . . . ,N do

5: β
(i)
n := gn(β

(i)
−n)

6: if f (β(i−1))− f (β(i)) < ε then
7: return β(i)

8: error ”not converged in imax iterations”

g solves gn for the n-th one-dimensional subproblem

gn(β1, . . . , βn−1, βn+1, . . . , βN) := arg min
β′∈R

f (β1, . . . , βn−1, β
′, βn+1, . . . , βN)

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 29

Machine Learning 3. Minimizing a Function via Coordinate Descent

Example: Simple Quadratic Function
Minimize

f (β1, β2) := β2
1 + β2

2 + β1β2

One dimensional problem for β1:

f (β1;β2) =β2
1 + β2

2 + β1β2

∂f

∂β1
(β1;β2) =2β1 + β2

!
= 0

 β1 = −1

2
β2

i.e., g1(β2) := −1

2
β2

and analogous for β2:

g2(β1) := −1

2
β1

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 29

Machine Learning 3. Minimizing a Function via Coordinate Descent

Example: Simple Quadratic Function

Minimize

f (β1, β2) := β2
1 + β2

2 + β1β2, β(0) := (1, 1)

g1(β2) := −1

2
β2, g2(β1) := −1

2
β1

i β(i) before n gn(β(i)) β(i−1) after

1 (1, 1) 1 −1/2 (−1/2, 1)
(−1/2, 1) 2 1/4 (−1/2, 1/4)

2 (−1/2, 1/4) 1 −1/8 (−1/8, 1/4)
(−1/8, 1/4) 2 1/16 (−1/8, 1/16)

...

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 29

Note: Minimize f (β1, β2) := β2
1 + β2

2 via CD yourself. What is different? Why?

Machine Learning 3. Minimizing a Function via Coordinate Descent

Learn Linear Regression via CD

Minimize

f (β̂) := ||y − X β̂||2 ∝ β̂TXTX β̂ − 2yTX β̂

f (β̂m; β̂−m) = xTm xmβ̂
2
m + 2β̂T−mX

T
−mxmβ̂m + β̂T−mX

T
−mX−mβ̂−m

− 2yT xmβ̂m − 2yTX−mβ̂−m

∝ xTm xmβ̂
2
m − 2(y − X−mβ̂−m)T xmβ̂m

∂f (β̂m; β̂−m)

∂β̂m

!
= 0 β̂m =

(y − X−mβ̂−m)T xm
xTm xm

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 29

Note: xm := X.,m denotes the m-th column of X ,
X−m denotes the matrix X without column m.

Machine Learning 3. Minimizing a Function via Coordinate Descent

Learn Linear Regression via CD

1: procedure learn-linreg-
CD(Dtrain := {(x1, y1), . . . , (xN , yN)}, imax ∈ N, ε ∈ R+)

2: X := (x1, x2, . . . , xN)T

3: y := (y1, y2, . . . , yN)T

4: β̂0 := (0, . . . , 0)
5: β̂ := minimize-CD(f (β̂) := (y − X β̂)T (y − X β̂),

g(β̂m; β̂−m) := (y−X−mβ̂−m)T xm
xTm xm

β̂0, imax, ε)

6: return β̂

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 29

Note: xm := X.,m denotes the m-th column of X ,
X−m denotes the matrix X without column m.

Machine Learning 4. L1 Regularization / The Lasso

Outline

1. Variable Interactions and Polynomial Models

2. Variable Selection via Forward and Backward Search

3. Minimizing a Function via Coordinate Descent

4. L1 Regularization / The Lasso

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 29

Machine Learning 4. L1 Regularization / The Lasso

L1 Regularization
Let X be the predictor matrix and y the target vector,

β̂ the model parameters,
ŷ the model predictions and
` the loss/error.

L2 regularization:

f (β̂) := `(y , ŷ(β̂,X)) + λ||β̂||22 = . . .+ λ

P∑
p=1

β2
p

L1 regularization:

f (β̂) := `(y , ŷ(β̂,X)) + λ||β̂||1 = . . .+ λ

P∑
p=1

|β̂p|

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 29

Machine Learning 4. L1 Regularization / The Lasso

Why L1 Regularization?

min. f (β̂) := `(y , ŷ(β̂,X)) +λ||β̂||1
β̂ ∈ RP

is equivalent to

min. f (β̂) := `(y , ŷ(β̂,X))

||β̂||1 ≤ B

β̂ ∈ RP

with

B := ||β̂∗||1

min. f (β̂) := `(y , ŷ(β̂,X)) +λ||β̂||22
β̂ ∈ RP

is equivalent to

min. f (β̂) := `(y , ŷ(β̂,X))

||β̂||22 ≤ B

β̂ ∈ RP

with

B := ||β̂∗||22

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 29

Note: β̂∗ denotes the optimal parameters. Thus this equivalence provides insight, but
cannot (yet) be used to solve the problem.

Machine Learning 4. L1 Regularization / The Lasso

Why L1 Regularization?

min. f (β̂) := `(y , ŷ(β̂,X)) +λ||β̂||1
β̂ ∈ RP

is equivalent to

min. f (β̂) := `(y , ŷ(β̂,X))

||β̂||1 ≤ B

β̂ ∈ RP

with

B := ||β̂∗||1

min. f (β̂) := `(y , ŷ(β̂,X)) +λ||β̂||22
β̂ ∈ RP

is equivalent to

min. f (β̂) := `(y , ŷ(β̂,X))

||β̂||22 ≤ B

β̂ ∈ RP

with

B := ||β̂∗||22

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 29

Note: β̂∗ denotes the optimal parameters. Thus this equivalence provides insight, but
cannot (yet) be used to solve the problem.

Machine Learning 4. L1 Regularization / The Lasso

Why L1 Regularization?

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

β^ β^2
. .β

1

β 2

β1
β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 29

source: [HTFF05, p. 90]

Machine Learning 4. L1 Regularization / The Lasso

Regularized Linear Regression

Let X the predictor matrix and y the target vector,
β̂ the linear regression model parameters,
ŷ := X β̂ the linear regression model predictions and
`(y , ŷ) := ||y − ŷ ||22 the RSS loss/error.

L2 Regularized Linear Regression (Ridge Regression):

f (β̂) := `(y , ŷ(β̂,X)) + λ||β̂||22
∝ β̂TXTX β̂ − 2yTX β̂ + λβ̂T β̂

= β̂T (XT + λ
1
2 I)(X + λ

1
2 I)β̂ − 2yTX β̂

I L2 regularized problem has same structure as unregularized one.

I All learning algorithms work seamlessly.

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 29

Machine Learning 4. L1 Regularization / The Lasso

Regularized Linear Regression
Let X the predictor matrix and y the target vector,

β̂ the linear regression model parameters,
ŷ := X β̂ the linear regression model predictions and
`(y , ŷ) := ||y − ŷ ||22 the RSS loss/error.

L1 regularized Linear Regression (Lasso):

f (β) := `(y , ŷ) + λ||β||1

∝ β̂TXTX β̂ − 2yTX β̂ + λ

M∑
m=1

|βm|

I L1 regularized problem has new terms |βm|.
I Esp. non-differentiable at 0.

I All learning algorithms seen so far do not work.
I Solving SLE is not applicable.
I Gradient Descent does not work.

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 29

Machine Learning 4. L1 Regularization / The Lasso

Hard & Soft Thresholding

xε−ε

f (x)

hard(x , ε) :=

{
x , if |x | > ε

0, else

xε−ε

f (x)

soft(x , ε) :=


x − ε, if x > ε

0, if |x | ≤ ε
x + ε, if x < −ε

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 29

Machine Learning 4. L1 Regularization / The Lasso

Coordinate Gradient for L1 Regularized Linear Regression

f (β̂) := β̂TXTX β̂ − 2yTX β̂ +λ
M∑

m=1

|βm|

f (β̂m; β̂−m) ∝ xTm xmβ̂
2
m − 2(y − X−mβ̂−m)T xmβ̂m +λ|βm|

∂f (β̂m; β̂−m)

∂β̂m

!
= 0 β̂m =

(y − X−mβ̂−m)T xm −1
2λ

xTm xm
, β̂m > 0

β̂m =
(y − X−mβ̂−m)T xm + 1

2λ

xTm xm
, β̂m < 0

 β̂m = soft(
(y − X−mβ̂−m)T xm

xTm xm
,

1
2λ

xTm xm
)

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 29

Note: LASSO = Least Absolute Selection and Shrinkage Operator.

Machine Learning 4. L1 Regularization / The Lasso

Learn L1-regularized Linear Regression via CD (Shooting
Algorithm)

1: procedure learn-linreg-l1reg-
CD(Dtrain := {(x1, y1), . . . , (xN , yN)}, λ ∈ R+, imax ∈ N, ε ∈ R+)

2: X := (x1, x2, . . . , xN)T

3: y := (y1, y2, . . . , yN)T

4: β̂0 := (0, . . . , 0)
5: β̂ := minimize-CD(f (β̂) := (y − X β̂)T (y − X β̂) + λ||β||1,

g(β̂m; β̂−m) := soft((y−X−mβ̂−m)T xm
xTm xm

,
1
2
λ

xTm xm
),

β̂0, α, imax, ε)

6: return β̂

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 29

Note: xm := X.,m denotes the m-th column of X ,
X−m denotes the matrix X without column m.

Machine Learning 4. L1 Regularization / The Lasso

Regularization Paths

L2 regularization

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

L1 regularization

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

x-axis: bound B on parameter size.
y-axis: parameter θ̂.

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 29

source: [Mur12, p. 437]

Machine Learning 4. L1 Regularization / The Lasso

Summary
I High-dimensional data poses problems as many parameters have to

be estimated from comparable few instances.

I Non-linear effects can be captured by derived predictor variables.
I e.g., in polynomial models.
I making even originally low-dimensional data high-dimensional.

I Relevant variables can be searched explicitly through a greedy
forward search and backward search.

I To minimize a function, coordinate descent cyclicly chooses the
coordinate axes as descent direction.

I efficient, if the one-dimensional subproblems can be solved
analytically.

I does need no step length.

I Variable selection also can be accomplished by L1 regularization.
I L1 regularized linear regression (LASSO) can be learned by

coordinate descent (shooting algorithm).
Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 29

Machine Learning

Further Readings

I [JWHT13, chapter 6], [Mur12, chapter 13], [HTFF05, chapter 3.3–8].

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 29

Machine Learning

References

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction, volume 27.
2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An introduction to statistical learning.
Springer, 2013.

Kevin P. Murphy.

Machine learning: a probabilistic perspective.
The MIT Press, 2012.

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 29

	1. Variable Interactions and Polynomial Models
	2. Variable Selection via Forward and Backward Search
	3. Minimizing a Function via Coordinate Descent
	4. L1 Regularization / The Lasso
	Appendix

