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Machine Learning 1. Distance Measures

Motivation

So far, regression and classification methods covered in the lecture can be
used for

I numerical variables,

I binary variables (re-interpreted as numerical), and

I nominal variables (coded as set of binary indicator variables).

Often one is also interested in more complex variables such as

I set-valued variables,

I sequence-valued variables (e.g., strings),

I . . .
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Machine Learning 1. Distance Measures

Motivation

There are two kinds of approaches to deal with such variables:

feature extraction:
try to derive binary or numerical variables,
then use standard methods on the feature vectors.

kernel methods:
try to establish a distance measure between two variables,
then use methods that use only distances between objects
(but no feature vectors).
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Machine Learning 1. Distance Measures

Distance measures
Let d be a distance measure (also called metric) on a set X , i.e.,

d : X ×X → R+
0

with

1. d is positiv definite: d(x , y) ≥ 0 and d(x , y) = 0⇔ x = y

2. d is symmetric: d(x , y) = d(y , x)

3. d is subadditive: d(x , z) ≤ d(x , y) + d(y , z)
(triangle inequality)

(for all x , y , z ∈ X .)

Example: Euclidean metric on X := Rn:

d(x , y) := (
n∑

i=1

(xi − yi )
2)

1
2
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Machine Learning 1. Distance Measures

Minkowski Metric / Lp metric

d(x , y) := (
n∑

i=1

|xi − yi |p)
1
p p ∈ R, p ≥ 1

p = 1 (taxicab distance; Manhattan distance):

d(x , y) :=
n∑

i=1

|xi − yi |

p = 2 (Euclidean distance):

d(x , y) := (
n∑

i=1

(xi − yi )
2)

1
2

p =∞ (maximum distance; Chebyshev distance):

d(x , y) := max
i=1,...,n

|xi − yi |
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Machine Learning 1. Distance Measures

Minkowski Metric / Lp metric / Example

Example:

x :=

 1
3
4

 , y :=

 2
4
1



dL1(x , y) =|1− 2|+ |3− 4|+ |4− 1| = 1 + 1 + 3 = 5

dL2(x , y) =
√

(1− 2)2 + (3− 4)2 + (4− 1)2 =
√

1 + 1 + 9 =
√

11 ≈ 3.32

dL∞(x , y) = max{|1− 2|, |3− 4|, |4− 1|} = max{1, 1, 3} = 3
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Machine Learning 1. Distance Measures

Similarity measures

Instead of a distance measure sometimes similarity measures are used,
i.e.,

sim : X ×X → R+
0

with

I sim is symmetric: sim(x , y) = sim(y , x).

Some similarity measures have stronger properties:

I sim is discerning: sim(x , y) ≤ 1 and sim(x , y) = 1⇔ x = y

I sim(x , z) ≥ sim(x , y) + sim(y , z)− 1.

Some similarity measures have values in [−1, 1] or even R
where negative values denote “dissimilarity”.
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Machine Learning 1. Distance Measures

Distance vs. Similarity measures

A discerning similarity measure can be turned into a semi-metric (pos. def.
& symmetric, but not necessarily subadditive) via

d(x , y) := 1− sim(x , y)

In the same way, a metric can be turned into a discerning similarity
measure
(with values eventually in ]−∞, 1]).
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Machine Learning 1. Distance Measures

Cosine Similarity
The angle between two vectors in Rn can be used as distance measure

d(x , y) := angle(x , y) := arccos(
〈x , y〉

||x ||2 ||y ||2
)

To avoid the arccos, often the cosine of the angle is used as similarity
measure (cosine similarity):

sim(x , y) := cos angle(x , y) :=
〈x , y〉

||x ||2 ||y ||2

Example:

x :=

 1
3
4

 , y :=

 2
4
1



sim(x , y) =
1 · 2 + 3 · 4 + 4 · 1√

1 + 9 + 16
√

4 + 16 + 1
=

18√
26
√

21
≈ 0.77

cosine similarity is not discerning as vectors with the same direction but of
arbitrary length have angle 0 and thus similarity 1.
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Machine Learning 1. Distance Measures

Distances for Nominal Variables

For binary variables there is only one reasonable distance measure:

d(x , y) := 1− I (x = y) with I (x = y) :=

{
1 if x = y
0 otherwise

This coincides with the L∞ distance for the indicator/dummy variables.

The same distance measure is useful for nominal variables with more than
two possible values.

For hierarchical variables, i.e., a nominal variable with levels arranged in a
hierarchy, there are more advanced distance measures (not covered here).
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Machine Learning 1. Distance Measures

Distances for Set-valued Variables
For set-valued variables (which values are subsets of a set A) the
Hamming distance often is used:

d(x , y) := |(x \ y) ∪ (y \ x)| = |{a ∈ A | I (a ∈ x) 6= I (a ∈ y)}|

(the number of elements contained in only one of the two sets).

Example:

d({a, e, p, l}, {a, b, n}) = 5, d({a, e, p, l}, {a, e, g , n, o, r}) = 6

Also often used is the similarity measure Jaccard coefficient:

sim(x , y) :=
|x ∩ y |
|x ∪ y |

Example:

sim({a, e, p, l}, {a, b, n}) =
1

6
, sim({a, e, p, l}, {a, e, g , n, o, r}) =

2

8

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 34



Machine Learning 1. Distance Measures

Distances for Strings / Sequences

edit distance / Levenshtein distance:

d(x , y) := minimal number of deletions, insertions or substitutions to
transform x in y

Examples:

d(man,men) =1

d(house, spouse) =2

d(order, express order) =8
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Machine Learning 1. Distance Measures

Distances for Strings / Sequences

The edit distance is computed recursively. With

x1:i := (xi ′)i ′=1,...,i = (x1, x2, . . . , xi ), i ∈ N

we compute the number of operations to transform x1:i into y1:j as

c(x1:i , y1:j) := min{ c(x1:i−1, y1:j) + 1, // delete xi , x1:i−1  y1:j
c(x1:i , y1:j−1) + 1, // x1:i  y1:j−1, insert yj
c(x1:i−1, y1:j−1) + I (xi 6= yj)} // x1:i−1  y1:j−1, substitute yj for xi

starting from

c(x1:0, y1:j) = c(∅, y1:j) := j // insert y1, . . . , yj
c(x1:i , y1:0) = c(x1:i , ∅) := i // delete x1, . . . , xi

Such a recursive computing scheme is called dynamic programming.
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Machine Learning 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused, exhausted).

d 9
e 8
t 7
s 6
u 5
a 4
h 3
x 2
e 1

0 1 2 3 4 5 6 7

y [j ]/x [i ] e x c u s e d
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Machine Learning 1. Distance Measures

Distances for Strings / Sequences
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d 9 8 7 7 6 5 4 3
e 8 7 6 6 5 4 3 4
t 7 6 5 5 4 3 3 4
s 6 5 4 4 3 2 3 4
u 5 4 3 3 2 3 4 5
a 4 3 2 2 2 3 4 5
h 3 2 1 1 2 3 4 5
x 2 1 0 1 2 3 4 5
e 1 0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

y [j ]/x [i ] e x c u s e d
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Machine Learning 2. K -Nearest Neighbor Models

Outline

1. Distance Measures

2. K -Nearest Neighbor Models

3. Kernel Regression

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 34



Machine Learning 2. K -Nearest Neighbor Models

Neighborhoods

Let d be a distance measure.
For a dataset

D ⊆ X × Y

and x ∈ X let
D = {(x1, y1), (x2, y2), . . . , (xN , yN)}

be an enumeration with increasing distance to x , i.e., d(x , xi ) ≤ d(x , xi+1)
(ties broken arbitrarily).
The first K ∈ N points of such an enumeration, i.e.,

CK (x) := {(x1, y1), (x2, y2), . . . (xK , yK )}

are called a K -neighborhood of x (in D).
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Machine Learning 2. K -Nearest Neighbor Models

Nearest Neighbor Regression
The K -nearest neighbor regressor

ŷ(x) :=
1

K

∑
(x ′,y ′)∈CK (x)

y ′

The K -nearest neighbor classifier

p̂(Y = y | x) :=
1

K

∑
(x ′,y ′)∈CK (x)

I (y = y ′)

and then predict the class with maximal predicted probability

ŷ(x) := arg max
y∈Y

p̂(Y = y | x)

i.e., the majority class w.r.t. the classes of the neighbors.
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Machine Learning 2. K -Nearest Neighbor Models

Nearest Neighbor Regression Algorithm

1: procedure predict-knn-
reg(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d)

2: allocate array D of size N
3: for n := 1, . . . ,N do
4: Dn := d(q, xn)

5: D = sort(D)
6: C := {(xi , yi ) ∈ D|i ≤ K}
7: ŷ := 1

K

∑K
k=1 yCk

8: return ŷ
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Machine Learning 2. K -Nearest Neighbor Models

Nearest Neighbor Classification Algorithm

1: procedure predict-knn-
class(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM ×Y,K ∈ N, d)

2: allocate array D of size N
3: for n := 1, . . . ,N do
4: Dn := d(q, xn)

5: D = sort(D)
6: C := {(xi , yi ) ∈ D|i ≤ K}
7: allocate array p̂ of size Y
8: for k := 1, . . . ,K do
9: p̂Ck

:= p̂Ck
+ 1

10: for y ∈ Y do
11: p̂y := 1

K p̂y

12: return (p̂)y∈Y
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Machine Learning 2. K -Nearest Neighbor Models

Decision Boundaries

For 1-nearest neighbor, the predictor space is partitioned in regions of
points that are closest to a given data point:

regionD(x1), regionD(x2), . . . , regionD(xN)

with

regionD(x) := {x ′ ∈ X | d(x ′, x) ≤ d(x ′, x ′′) ∀(x ′′, y ′′) ∈ D}

These regions often are called cells, the whole partition a Voronoi
tesselation.
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Machine Learning 2. K -Nearest Neighbor Models

Decision Boundaries

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 34



Machine Learning 2. K -Nearest Neighbor Models

Decision Boundaries
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Machine Learning 2. K -Nearest Neighbor Models

Complexity of K -Nearest Neighbor Classifier

The K -Nearest Neighbor classifier does not need any learning algorithm as
it just stores all the training examples.

On the other hand, predicting using a K -nearest neighbor classifier is slow:

I To predict the class of a new point x , the distance d(x , xi ) from x to
each of the N training examples (x1, y1), . . . , (xN , yN) has to be
computed.

I If the predictor space is X := RM , for one such computation we need
O(M) operations.

I We then keep track of the K points with the smallest distance.

So in total one needs O(NM + NK ) operations.
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Machine Learning 2. K -Nearest Neighbor Models

Partial Distances / Lower Bounding

In practice, nearest neighbor classifiers often can be accelerated by several
methods.
Partial distances:
Compute the distance to each training point x ′ only partially, e.g.,

dr (x , x ′) := (
r∑

m=1

(xm − x ′m)2)
1
2 , r ≤ M

As dr is non-decreasing in r , once dr (x , x ′) exceeds the K -th smallest
distance computed so far, the training point x ′ can be dropped.

This is a heuristic:
it may accelerate computations, but it also may slow it down
(as there are additional comparisons of the partial distances with the K
smallest distance).
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Machine Learning 3. Kernel Regression
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Machine Learning 3. Kernel Regression

K -Nearest Neighbor is locally constant
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Points generated by the model y = sin(4x) +N (0, 1/3) with
x ∼ unif(0, 1).
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Machine Learning 3. Kernel Regression

K -Nearest Neighbor is locally constant
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Machine Learning 3. Kernel Regression

K -Nearest Neighbor is locally constant

K -nearest neighbor models are

I based on discrete decisions if a point is a K -nearest neighbor or not,

I in effect, locally constant,

I and thus not continuous.
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Machine Learning 3. Kernel Regression

Formulation using window functions

Discrete decisions can be captured by binary window functions, consider

K (x , x0) :=

{
1, if (x , y) ∈ Nk(x0)
0, otherwise

Then, using this formulation we can rewrite the KNN regressor as:

ŷ(x0) =

∑
(x ,y)∈X K (x , x0)y∑
(x ,y)∈X K (x , x0)

instead of

ŷ(x0) =

∑
(x ,y)∈Nk (x0)

y

k
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Machine Learning 3. Kernel Regression

On the window size

In K -nearest neighbor the size of the window varies from point to point: it
depends on the density of the data:

I in dense parts the effective window size is small

I in sparse pars the effective window size is large

Alternatively, it is also possible to set the size of the windows to a
constant λ, e.g.,

Kλ(x , x0) :=

{
1, if |x − x0| ≤ λ
0, otherwise
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Machine Learning 3. Kernel Regression

Kernel Regression

Instead of discrete windows, one typically uses continuous windows, i.e.,
continuous weights

K (x , x0)

that reflect the distance of a training point x to a prediction point x0,
called kernel, e.g.,

K (x , x0) :=

{
1− |x−x0|λ , if |x − x0| ≤ λ
0, otherwise

Instead of a binary neighbor/not-neighbor decision, a continuous kernel
captures a “degree of neighborship”.
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Machine Learning 3. Kernel Regression

Epanechnikov Kernel

Kernels are similarity measures:
the closer two points, the larger the kernel value.

Epanechnikov kernel

Kλ(x , y) :=D

(
|x − y |
λ

)
with

D(t) :=

{
3
4(1− t2), t < 1
0, otherwise

The constant λ ∈ R+ is called bandwidth.
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Machine Learning 3. Kernel Regression

More kernels

Tri-cube kernel

D(t) :=

{
(1− t3)3, t < 1
0, otherwise

Gaussian kernel

D(t) :=
1√
2π

e−
1
2
t2

The Epanechnikov and Tri-cube kernel have compact support
[x0 − λ, x0 + λ].

The Gaussian kernel has noncompact support, λ acts as standard
deviation.
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Machine Learning 3. Kernel Regression

Kernels
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Machine Learning 3. Kernel Regression

Example / Epanechnikov Kernel, λ = 0.2
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Machine Learning 3. Kernel Regression

Choosing the Bandwidth

If the bandwidth λ is small
larger variance – as averaged over fewer points
smaller bias – as closer instances are used
⇒ risks to be too bumpy

If the bandwidth λ is large
smaller variance – as averaged over more points
larger bias – as instances further apart are used
⇒ risks to be too rigid / over-smoothed

The bandwidth λ is a parameter (sometimes called a hyperparameter) of
the model that needs to be optimized / estimated by data.
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Machine Learning 3. Kernel Regression

Example / Epanechnikov Kernel, various bandwidths
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Machine Learning 3. Kernel Regression

Summary

I Simple classification and regression models can be built by

I averaging over target values (regression)
I counting the occurrences of the target class (classification)

of training instances close by (measured in some distance measure).

I The nearest neighbor takes always a fixed number K of nearest points into
account.

I Alternatively, one also could weight points with some similarity measure
(called kernel),
⇒ the model is called kernel regression and kernel classification.

I There are no learning tasks for these models, as simply all training instances
are stored (“memory-based methods”).

I Therefore, to compute predictions is more costly than for say linear models.
There are some acceleration techniques

I partial distances / lower bounding
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Further Readings

I [HTFF05, chapter 13.3, 2.3.2], [Mur12, chapter 1.4.2, 14.1+2+4],
[JWHT13, chapter 2.2.3, ].
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