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Machine Learning 1. Distance Measures

. ) P2
Motivation v

So far, regression and classification methods covered in the lecture can be
used for

» numerical variables,

» binary variables (re-interpreted as numerical), and

» nominal variables (coded as set of binary indicator variables)

Often one is also interested in more complex variables such as
» set-valued variables,

» sequence-valued variables (e.g., strings),
>
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Machine Learning 1. Distance Measures

. ) P2
Motivation v

There are two kinds of approaches to deal with such variables:

feature extraction:

try to derive binary or numerical variables,

then use standard methods on the feature vectors.
kernel methods:

try to establish a distance measure between two variables,

then use methods that use only distances between objects
(but no feature vectors).
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Machine Learning 1. Distance Measures

Distance measures

Let d be a distance measure (also called metric) on a set X, i.e.

d: XxX = R§
with

1. d is positiv definite: d(x,y) > 0and d(x,y) =0 x=y
2. dis symmetric: d(x,y) = d(y,x)
3. d is subadditive: d(x,z) < d(x,y)+ d(y, z)
(triangle inequality)
(for all x,y,z € X.)

Example: Euclidean metric on X := R"™:

n

d(x,y) = (3 (xi — 1))

i=1

[m} = = =

(=) =
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Machine Learning 1. Distance Measures

. . : ) P2
Minkowski Metric / L, metric VA
d(x,y) = (Z ’Xi—)’i‘p)% peR,p>1

i=1

p = 1 (taxicab distance; Manhattan distance):

d(X’y) = Z |Xi _yI’
i=1

p = 2 (Euclidean distance):

" 1
d(x,y) = (Y0 —¥i)?)?
i=1
p = oo (maximum distance; Chebyshev distance):

d(x,y) = max [x;~ yi

=1,...,n
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Machine Learning 1. Distance Measures

Minkowski Metric / L, metric / Example

Example:
1 2
x=13 1], y=1 4
4 1

di,(x,y)=1—2/+3—4|+|4—1=1+14+3=5

dua(x.y) =1/(1 - 22 + (342 + (4 - 12 = VI 11 0= VIl ~3.32

dLOO(X,_)/) :max{|1 - 2|7 |3 - 4‘7 |4 - 1|} = max{l, 173} =3
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Machine Learning 1. Distance Measures

. B
Similarity measures “

Instead of a distance measure sometimes similarity measures are used,
i.e.,

sim: X x X — R
with

» sim is symmetric: sim(x, y) = sim(y, x).

Some similarity measures have stronger properties:
» sim is discerning: sim(x,y) <1 and sim(x,y)=1<x=y
» sim(x,z) > sim(x,y) +sim(y,z) — 1.

Some similarity measures have values in [—1, 1] or even R
where negative values denote “dissimilarity” .
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Machine Learning 1. Distance Measures

. T N
Distance vs. Similarity measures “

A discerning similarity measure can be turned into a semi-metric (pos. def.
& symmetric, but not necessarily subadditive) via

d(x,y) :==1—sim(x,y)

In the same way, a metric can be turned into a discerning similarity
measure

(with values eventually in | — oo, 1]).
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Machine Learning 1. Distance Measures

. T N
Cosine Similarity “
The angle between two vectors in R” can be used as distance measure
(x.y)
d(x,y) := angle(x, y) := arccos(+————)
(X112 [1y ]2

To avoid the arccos, often the cosine of the angle is used as similarity
measure (cosine similarity):

) .y
sim(x, y) := cosangle(x, y) := ||x<]|2||)>/||2
Example:
1 2
x=|31], y=1 24
4 1
i 1-2+3-4+4-1 18
sim(x,y) =

VI+9+16V4+16+1 /26\/21
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Machine Learning 1. Distance Measures

. . } P2
Distances for Nominal Variables v

For binary variables there is only one reasonable distance measure:

B _ . v 1 ifx=y
d(x,y) :=1—I(x=y) with I[(x=y) '_{ 0 otherwise

This coincides with the L., distance for the indicator/dummy variables.

The same distance measure is useful for nominal variables with more than
two possible values.

For hierarchical variables, i.e., a nominal variable with levels arranged in a
hierarchy, there are more advanced distance measures (not covered here).
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Machine Learning 1. Distance Measures

. ) P2
Distances for Set-valued Variables v

For set-valued variables (which values are subsets of a set A) the
Hamming distance often is used:

dix,y) = 1(x\y) Uy \x)| =[{ac All(acx)# I(acy)j
(the number of elements contained in only one of the two sets).

Example:

d({a,e,p,/},{a,b,n}) =5, d({a, e p,l},{aeg,n01r})=06

Also often used is the similarity measure Jaccard coefficient:

_Ixnyl

sim(x,y) == xUy|

Example:

1 2
sim({a, e, p,1},{a, b,n}) = & sim({a,e,p,},{a,e,g,n,0,r}) = 3
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Machine Learning 1. Distance Measures

: : N
Distances for Strings / Sequences i

edit distance / Levenshtein distance:

d(x,y) := minimal number of deletions, insertions or substitutions to
transform x in y

Examples:

d(man, men) =1

d(house, spouse) =2

d(order, express order) =8
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Machine Learning 1. Distance Measures
Distances for Strings / Sequences g
The edit distance is computed recursively. With
xj = (Xin)ir=1,..i = (X1, %, ..., %), €N
we compute the number of operations to transform xi.; into yi.; as
c(xa:i, y1;j) == min{ c(x.i—1, y15) + 1, // delete x;, x1.i—1 ~ y1;j

c(xwi, yrij—1) + 1, /] Xui ~ y1j—1,insert y;
c(xi—1,y1j-1) + 1(xi # y;)} /] Xwi—1 ~» y1;j—1, substitute y;

starting from

C(Xl:Ovyl:j) = C(Q»yl:j) = ./ // insert Yi,--5 Y
C(X1:i7y1:0) = C(Xl;,'7 (Z)) = // delete xq,...,x;

Such a recursive computing scheme is called dynamic programming.
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Machine Learning 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused, exhausted).

D X T LU & 0 ~+~ 0o Q
O, NN WPOIO N OO

o | =
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o
oo
Q |~
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Machine Learning 1. Distance Measures

B
Distances for Strings / Sequences i

Example: compute d(excused, exhausted).

d 9 8 7 7 6 5 4 3
e 8 7 6 6 5 4 3 4
t 7 6 55 4 3 3 4
s 6 5 4 4 3 2 3 4
u 54 3 3 2 3 45
a 4 3 2 2 2 3 45
h 321123465
X 21 012 3 45
e 10123 456
01 234567
yU1/x[1] e x ¢c us e d
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Machine Learning 1. Distance Measures

B
Distances for Strings / Sequences i

Example: compute d(excused, exhausted).

d 9 8 7 7 6 5 4 3
e 8 7 6 6 5 4 3 4
t 7 6 55 4 3 3 4
s 6 5 4 4 3 2 3 4
u 54 3 3 2 3 45
a 4 3 2 2 2 3 45
h 321123465
X 21 01 2 3 45
e 10123 456
01 234567
yU1/x[1] e x ¢c us e d
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Machine Learning 2. K-Nearest Neighbor Models
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Machine Learning 2. K-Nearest Neighbor Models

B
Neighborhoods “

Let d be a distance measure.
For a dataset

DCXxY
and x € X let
D= {(X17YI)7(X27}/2)7---7(XN>)/N)}

be an enumeration with increasing distance to x, i.e., d(x, x;) < d(x, xj+1)
(ties broken arbitrarily).

The first K € N points of such an enumeration, i.e.,

Ck(x) == {(x1,71), (2, ¥2), - - - (X, ¥K) }

are called a K-neighborhood of x (in D).
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Machine Learning 2. K-Nearest Neighbor Models

NN
Nearest Neighbor Regression “

The K-nearest neighbor regressor

y(x) = ooy

(x",y")€Ck(x)
The K-nearest neighbor classifier

pLY =y|x) ::}1( oo dy=y)

(x".y")eCk(x)

and then predict the class with maximal predicted probability

§(x) = argmax p(Y = y | )
yey

i.e., the majority class w.r.t. the classes of the neighbors.
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Machine Learning 2. K-Nearest Neighbor Models

Nearest Neighbor Regression Algorithm

1: procedure PREDICT-KNN-
REG(q € RM DN .= L(xy, 1), ..., (xn, yv)} € RM x R, K € N, d)
allocate array D of size N
forn:=1,...,N do
D, := d(q, xn)
D = sort(D)
C:={(x) € Dl < K}

y= *Zk 1YC
return §
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Machine Learning 2. K-Nearest Neighbor Models

Nearest Neighbor Classification Algorithm

1: procedure PREDICT-KNN-

cLass(qg € RM Dain .= L(x 1), ..., (xn, yn)} € RMx Y, K € N, d)
2 allocate array D of size N
3 forn:=1,...,N do
4 D, := d(q, xn)
5: D = sort(D)
6: C :={(xi,yi) € D|i <K}
7: allocate array p of size )
8 for k:=1,...,K do
9 bc, = pPc, +1
10: for y € Y do
11: Py := %Py
12: return (p),cy
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Machine Learning 2. K-Nearest Neighbor Models

. . ) P2
Decision Boundaries “

For 1-nearest neighbor, the predictor space is partitioned in regions of
points that are closest to a given data point:

regionp(x1), regionp(x2), . . ., regiony(xy)

with

regionp(x) :={x" € X |d(x',x) < d(x',x") V(x",y") e D}

These regions often are called cells, the whole partition a Voronoi
tesselation.
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Machine Learning 2. K-Nearest Neighbor Models
Decision Boundaries
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Machine Learning 2. K-Nearest Neighbor Models
Decision Boundaries
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Machine Learning 2. K-Nearest Neighbor Models

B
Complexity of K-Nearest Neighbor Classifier “

The K-Nearest Neighbor classifier does not need any learning algorithm as
it just stores all the training examples.

On the other hand, predicting using a K-nearest neighbor classifier is slow:

» To predict the class of a new point x, the distance d(x, x;) from x to
each of the N training examples (x1,y1),- .., (xn, yn) has to be
computed.

» If the predictor space is X := RM, for one such computation we need
O(M) operations.

» We then keep track of the K points with the smallest distance.
So in total one needs O(NM + NK) operations.
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Machine Learning 2. K-Nearest Neighbor Models

B
Partial Distances / Lower Bounding i

In practice, nearest neighbor classifiers often can be accelerated by several
methods.

Partial distances:
Compute the distance to each training point x” only partially, e.g.,

d(x, %) = (Y (i — x)?)2, r <M

m=1

As d, is non-decreasing in r, once d,(x, x’) exceeds the K-th smallest
distance computed so far, the training point x’ can be dropped.

This is a heuristic:

it may accelerate computations, but it also may slow it down

(as there are additional comparisons of the partial distances with the K
smallest distance).
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Machine Learning 3. Kernel Regression

Outline

3. Kernel Regression
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Machine Learning 3. Kernel Regression

K-Nearest Neighbor is locally constant

15
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Points generated by the model y = sin(4x) + N(0,1/3) with
x ~ unif(0, 1).
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Machine Learning 3. Kernel Regression

. . N
K-Nearest Neighbor is locally constant “
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Machine Learning 3. Kernel Regression

K-Nearest Neighbor is locally constant

K-nearest neighbor models are

» based on discrete decisions if a point is a K-nearest neighbor or not,

» in effect, locally constant,

» and thus not continuous.
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Machine Learning 3. Kernel Regression

. . . . N
Formulation using window functions “

Discrete decisions can be captured by binary window functions, consider

o 17 if (va) € Nk(XU)
Kxx0) = { 0, otherwise

Then, using this formulation we can rewrite the KNN regressor as:

N Z X K(X,Xo)y
y(x0) = Z( SIEX e
(x,y)eX (X7 XO)

instead of

N Zx Ne(x0) Y
P(x0) = ( 7}’)i k(x0)
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Machine Learning 3. Kernel Regression

NN
On the window size v

In K-nearest neighbor the size of the window varies from point to point: it
depends on the density of the data:

» in dense parts the effective window size is small

» in sparse pars the effective window size is large

Alternatively, it is also possible to set the size of the windows to a
constant A, e.g.,

1, if [x — x| <A
Ka(x: x0) = { 0, otherwise
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Machine Learning 3. Kernel Regression

. N
Kernel Regression “

Instead of discrete windows, one typically uses continuous windows, i.e.,
continuous weights

K(x,x0)

that reflect the distance of a training point x to a prediction point xp,
called kernel, e.g.,

K(x,x0) := 17|x—)\x0|7 if [x —xo| <A
707 0, otherwise

Instead of a binary neighbor/not-neighbor decision, a continuous kernel
captures a “degree of neighborship”.
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Machine Learning 3. Kernel Regression

Epanechnikov Kerne

Kernels are similarity measures:

the closer two points, the larger the kernel value.

Epanechnikov kernel

Ka(x,y) :=D <|X;y|>

with

31-¢%), t<1
0, otherwise

The constant A € R™ is called bandwidth.

=] (=) El= DA
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Machine Learning 3. Kernel Regression

NN
More kernels v

Tri-cube kernel

D(t) :_{ (1-t33, t<1

0, otherwise

Gaussian kernel

1
D(t) ::EG_%tZ

The Epanechnikov and Tri-cube kernel have compact support
[Xo — A, xp + )\]

The Gaussian kernel has noncompact support, A acts as standard
deviation.
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Machine Learning 3. Kernel Regression

NN
Kernels v
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Machine Learning 3. Kernel Regression

o
-

Example / Epanechnikov Kernel, A = 0.2
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Machine Learning 3. Kernel Regression

Choosing the Bandwidth

If the bandwidth X is small
larger variance — as averaged over fewer points
smaller bias — as closer instances are used
= risks to be too bumpy

If the bandwidth X is large
smaller variance — as averaged over more points
larger bias — as instances further apart are used
= risks to be too rigid / over-smoothed

The bandwidth X\ is a parameter (sometimes called a hyperparameter) of
the model that needs to be optimized / estimated by data.
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Machine Learning 3. Kernel Regression

NN
Example / Epanechnikov Kernel, various bandwidths “
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Machine Learning 3. Kernel Regression

NN
Summary “

» Simple classification and regression models can be built by

» averaging over target values (regression)
» counting the occurrences of the target class (classification)

of training instances close by (measured in some distance measure).

» The nearest neighbor takes always a fixed number K of nearest points into
account.

» Alternatively, one also could weight points with some similarity measure
(called kernel),

=> the model is called kernel regression and kernel classification.

» There are no learning tasks for these models, as simply all training instances
are stored (“memory-based methods").

» Therefore, to compute predictions is more costly than for say linear models.
There are some acceleration techniques

» partial distances / lower bounding
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Machine Learning

Further Readings

[JWHT13, chapter 2.2.3, ].

» [HTFFO5, chapter 13.3, 2.3.2], [Murl2, chapter 1.4.2, 14.1+2+4],

=) ] = =y Z= 9
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