## Machine Learning

A. Supervised Learning
A.5. Nearest-Neighbor Models

## Lars Schmidt-Thieme, Nicolas Schilling

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

## Outline

1. Distance Measures
2. K-Nearest Neighbor Models

3. Kernel Regression

## Outline

## 1. Distance Measures

## 2. K-Nearest Neighbor Models

## 3. Kernel Regression

## Motivation

So far, regression and classification methods covered in the lecture can be used for

- numerical variables,
- binary variables (re-interpreted as numerical), and
- nominal variables (coded as set of binary indicator variables).

Often one is also interested in more complex variables such as

- set-valued variables,
- sequence-valued variables (e.g., strings),


## Motivation

There are two kinds of approaches to deal with such variables:
feature extraction:
try to derive binary or numerical variables, then use standard methods on the feature vectors.
kernel methods:
try to establish a distance measure between two variables, then use methods that use only distances between objects (but no feature vectors).

## Distance measures

Let $d$ be a distance measure (also called metric) on a set $\mathcal{X}$, i.e.,

$$
d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}
$$

with

1. $d$ is positiv definite: $d(x, y) \geq 0$ and $d(x, y)=0 \Leftrightarrow x=y$
2. $d$ is symmetric: $d(x, y)=d(y, x)$
3. $d$ is subadditive: $d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality)
(for all $x, y, z \in \mathcal{X}$.)
Example: Euclidean metric on $\mathcal{X}:=\mathbb{R}^{n}$ :

$$
d(x, y):=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{\frac{1}{2}}
$$

## Minkowski Metric / $L_{p}$ metric

$$
d(x, y):=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}} \quad p \in \mathbb{R}, p \geq 1
$$

$p=1$ (taxicab distance; Manhattan distance):

$$
d(x, y):=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

$p=2$ (Euclidean distance):

$$
d(x, y):=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{\frac{1}{2}}
$$

$p=\infty$ (maximum distance; Chebyshev distance):

$$
d(x, y):=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|
$$

## Minkowski Metric / $L_{p}$ metric / Example

## Example:

$$
\begin{aligned}
& d_{L_{1}}(x, y)=|1-2|+|3-4|+|4-1|=1+1+3=5 \\
& d_{L_{2}}(x, y)=\sqrt{(1-2)^{2}+(3-4)^{2}+(4-1)^{2}}=\sqrt{1+1+9}=\sqrt{11} \approx 3.32
\end{aligned}
$$

$$
d_{L_{\infty}}(x, y)=\max \{|1-2|,|3-4|,|4-1|\}=\max \{1,1,3\}=3
$$

## Similarity measures

Instead of a distance measure sometimes similarity measures are used, i.e.,

$$
\operatorname{sim}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}
$$

with

- $\operatorname{sim}$ is symmetric: $\operatorname{sim}(x, y)=\operatorname{sim}(y, x)$.

Some similarity measures have stronger properties:

- sim is discerning: $\operatorname{sim}(x, y) \leq 1$ and $\operatorname{sim}(x, y)=1 \Leftrightarrow x=y$
- $\operatorname{sim}(x, z) \geq \operatorname{sim}(x, y)+\operatorname{sim}(y, z)-1$.

Some similarity measures have values in $[-1,1]$ or even $\mathbb{R}$ where negative values denote "dissimilarity".

## Distance vs. Similarity measures

A discerning similarity measure can be turned into a semi-metric (pos. def. \& symmetric, but not necessarily subadditive) via

$$
d(x, y):=1-\operatorname{sim}(x, y)
$$

In the same way, a metric can be turned into a discerning similarity measure (with values eventually in ] $-\infty, 1]$ ).

## Cosine Similarity

The angle between two vectors in $\mathbb{R}^{n}$ can be used as distance measure

$$
d(x, y):=\operatorname{angle}(x, y):=\arccos \left(\frac{\langle x, y\rangle}{\|x\|_{2}\|y\|_{2}}\right)
$$

To avoid the arccos, often the cosine of the angle is used as similarity measure (cosine similarity):

$$
\operatorname{sim}(x, y):=\cos \operatorname{angle}(x, y):=\frac{\langle x, y\rangle}{\|x\|_{2}\|y\|_{2}}
$$

Example:

$$
\begin{gathered}
x:=\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right), \quad y:=\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right) \\
\operatorname{sim}(x, y)=\frac{1 \cdot 2+3 \cdot 4+4 \cdot 1}{\sqrt{1+9+16} \sqrt{4+16+1}}=\frac{18}{\sqrt{26} \sqrt{21}} \approx 0.77
\end{gathered}
$$

## Distances for Nominal Variables

For binary variables there is only one reasonable distance measure:

$$
d(x, y):=1-I(x=y) \quad \text { with } I(x=y):= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

This coincides with the $L_{\infty}$ distance for the indicator/dummy variables.
The same distance measure is useful for nominal variables with more than two possible values.

For hierarchical variables, i.e., a nominal variable with levels arranged in a hierarchy, there are more advanced distance measures (not covered here).

## Distances for Set-valued Variables

For set-valued variables (which values are subsets of a set $A$ ) the Hamming distance often is used:

$$
d(x, y):=|(x \backslash y) \cup(y \backslash x)|=|\{a \in A \mid I(a \in x) \neq I(a \in y)\}|
$$

(the number of elements contained in only one of the two sets).
Example:

$$
d(\{a, e, p, l\},\{a, b, n\})=5, \quad d(\{a, e, p, I\},\{a, e, g, n, o, r\})=6
$$

Also often used is the similarity measure Jaccard coefficient:

$$
\operatorname{sim}(x, y):=\frac{|x \cap y|}{|x \cup y|}
$$

Example:

$$
\operatorname{sim}(\{a, e, p, l\},\{a, b, n\})=\frac{1}{6}, \quad \operatorname{sim}(\{a, e, p, l\},\{a, e, g, n, o, r\})=\frac{2}{8}
$$

## Distances for Strings / Sequences

## edit distance / Levenshtein distance:

$d(x, y):=$ minimal number of deletions, insertions or substitutions to transform $x$ in $y$

Examples:

$$
\begin{aligned}
d(\text { man }, \text { men }) & =1 \\
d(\text { house }, \text { spouse }) & =2
\end{aligned}
$$

$d($ order, express order $)=8$

## Distances for Strings / Sequences

The edit distance is computed recursively. With

$$
x_{1: i}:=\left(x_{i^{\prime}}\right)_{i^{\prime}=1, \ldots, i}=\left(x_{1}, x_{2}, \ldots, x_{i}\right), \quad i \in \mathbb{N}
$$

we compute the number of operations to transform $x_{1: i}$ into $y_{1: j}$ as

$$
\begin{aligned}
c\left(x_{1: i}, y_{1: j}\right):=\min \{ & c\left(x_{1: i-1}, y_{1: j}\right)+1, & & / / \text { delete } x_{i}, x_{1: i-1} \rightsquigarrow y_{1: j} \\
& c\left(x_{1: i}, y_{1: j-1}\right)+1, & & / / x_{1: i} \rightsquigarrow y_{1: j-1}, \text { insert } y_{j} \\
& \left.c\left(x_{1: i-1}, y_{1: j-1}\right)+I\left(x_{i} \neq y_{j}\right)\right\} & & / / x_{1: i-1} \rightsquigarrow y_{1: j-1}, \text { substitute } y_{j}
\end{aligned}
$$

starting from

$$
\begin{array}{ll}
c\left(x_{1: 0}, y_{1: j}\right)=c\left(\emptyset, y_{1: j}\right):= & j \quad / / \text { insert } y_{1}, \ldots, y_{j} \\
c\left(x_{1: i}, y_{1: 0}\right)=c\left(x_{1: i}, \emptyset\right):= & i \quad / / \text { delete } x_{1}, \ldots, x_{i}
\end{array}
$$

Such a recursive computing scheme is called dynamic programming.

## Distances for Strings / Sequences

Example: compute $d$ (excused, exhausted).

| $d$ | 9 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | 8 |  |  |  |  |  |  |  |
| $t$ | 7 |  |  |  |  |  |  |  |
| $s$ | 6 |  |  |  |  |  |  |  |
| $u$ | 5 |  |  |  |  |  |  |  |
| $a$ | 4 |  |  |  |  |  |  |  |
| $h$ | 3 |  |  |  |  |  |  |  |
| $x$ | 2 |  |  |  |  |  |  |  |
| $e$ | 1 |  |  |  |  |  |  |  |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $y[j] / x[i]$ |  | $e$ | $x$ | $c$ | $u$ | $s$ | $e$ | $d$ |

## Distances for Strings / Sequences

Example: compute $d$ (excused, exhausted).

| $d$ | 9 | 8 | 7 | 7 | 6 | 5 | 4 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | 8 | 7 | 6 | 6 | 5 | 4 | 3 | 4 |
| $t$ | 7 | 6 | 5 | 5 | 4 | 3 | 3 | 4 |
| $s$ | 6 | 5 | 4 | 4 | 3 | 2 | 3 | 4 |
| $u$ | 5 | 4 | 3 | 3 | 2 | 3 | 4 | 5 |
| $a$ | 4 | 3 | 2 | 2 | 2 | 3 | 4 | 5 |
| $h$ | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 |
| $x$ | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| $e$ | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $y[j] / x[i]$ |  | $e$ | $x$ | $c$ | $u$ | $s$ | $e$ | $d$ |

## Distances for Strings / Sequences

Example: compute $d$ (excused, exhausted).

| $d$ | 9 | 8 | 7 | 7 | 6 | 5 | 4 | 3 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $e$ | 8 | 7 | 6 | 6 | 5 | 4 | 3 | 4 |
| $t$ | 7 | 6 | 5 | 5 | 4 | 3 | 3 | 4 |
| $s$ | 6 | 5 | 4 | 4 | 3 | 2 | 3 | 4 |
| $u$ | 5 | 4 | 3 | 3 | 2 | 3 | 4 | 5 |
| $a$ | 4 | 3 | 2 | 2 | 2 | 3 | 4 | 5 |
| $h$ | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 |
| $x$ | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| $e$ | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $y[j] / x[i]$ |  | $e$ | $x$ | $c$ | $u$ | $s$ | $e$ | $d$ |

## Outline

## 1. Distance Measures

## 2. K-Nearest Neighbor Models

## 3. Kernel Regression

## Neighborhoods

Let $d$ be a distance measure.
For a dataset

$$
D \subseteq X \times Y
$$

and $x \in \mathcal{X}$ let

$$
D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}
$$

be an enumeration with increasing distance to $x$, i.e., $d\left(x, x_{i}\right) \leq d\left(x, x_{i+1}\right)$ (ties broken arbitrarily).
The first $K \in \mathbb{N}$ points of such an enumeration, i.e.,

$$
C_{K}(x):=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{K}, y_{K}\right)\right\}
$$

are called a $K$-neighborhood of $x($ in $D)$.

## Nearest Neighbor Regression

The $K$-nearest neighbor regressor

$$
\hat{y}(x):=\frac{1}{K} \sum_{\left(x^{\prime}, y^{\prime}\right) \in C_{K}(x)} y^{\prime}
$$

The K-nearest neighbor classifier

$$
\hat{p}(Y=y \mid x):=\frac{1}{K} \sum_{\left(x^{\prime}, y^{\prime}\right) \in C_{K}(x)} I\left(y=y^{\prime}\right)
$$

and then predict the class with maximal predicted probability

$$
\hat{y}(x):=\underset{y \in \mathcal{Y}}{\arg \max } \hat{p}(Y=y \mid x)
$$

i.e., the majority class w.r.t. the classes of the neighbors.

## Nearest Neighbor Regression Algorithm

1: procedure PREDICT-KNN-
$\operatorname{REG}\left(q \in \mathbb{R}^{M}, \mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \in \mathbb{R}^{M} \times \mathbb{R}, K \in \mathbb{N}, d\right)$
2: allocate array $D$ of size $N$
3: for $n:=1, \ldots, N$ do
4: $\quad D_{n}:=d\left(q, x_{n}\right)$
5: $\quad D=\operatorname{SORT}(D)$
6: $\quad C:=\left\{\left(x_{i}, y_{i}\right) \in D \mid i \leq K\right\}$
7: $\quad \hat{y}:=\frac{1}{K} \sum_{k=1}^{K} y_{C_{k}}$
8: return $\hat{y}$

## Nearest Neighbor Classification Algorithm

1: procedure PREDICT-KNN-
$\operatorname{CLASS}\left(q \in \mathbb{R}^{M}, \mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \in \mathbb{R}^{M} \times \mathcal{Y}, K \in \mathbb{N}, d\right)$
2: $\quad$ allocate array $D$ of size $N$
3: $\quad$ for $n:=1, \ldots, N$ do
4: $\quad D_{n}:=d\left(q, x_{n}\right)$
5: $\quad D=\operatorname{sORT}(D)$
6: $\quad C:=\left\{\left(x_{i}, y_{i}\right) \in D \mid i \leq K\right\}$
7: $\quad$ allocate array $\hat{p}$ of size $\mathcal{Y}$
8: $\quad$ for $k:=1, \ldots, K$ do
9: $\quad \hat{p}_{C_{k}}:=\hat{p} C_{k}+1$
10: $\quad$ for $y \in \mathcal{Y}$ do
11

$$
\hat{p}_{y}:=\frac{1}{K} \hat{p}_{y}
$$

12: return $(\hat{p})_{y \in \mathcal{Y}}$

## Decision Boundaries

For 1-nearest neighbor, the predictor space is partitioned in regions of points that are closest to a given data point:

$$
\operatorname{region}_{D}\left(x_{1}\right), \text { region }_{D}\left(x_{2}\right), \ldots, \text { region }_{D}\left(x_{N}\right)
$$

with

$$
\operatorname{region}_{D}(x):=\left\{x^{\prime} \in \mathcal{X} \mid d\left(x^{\prime}, x\right) \leq d\left(x^{\prime}, x^{\prime \prime}\right) \quad \forall\left(x^{\prime \prime}, y^{\prime \prime}\right) \in D\right\}
$$

These regions often are called cells, the whole partition a Voronoi tesselation.

## Decision Boundaries



## Decision Boundaries



## Complexity of K-Nearest Neighbor Classifier

The K-Nearest Neighbor classifier does not need any learning algorithm as it just stores all the training examples.

On the other hand, predicting using a $K$-nearest neighbor classifier is slow:

- To predict the class of a new point $x$, the distance $d\left(x, x_{i}\right)$ from $x$ to each of the $N$ training examples $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ has to be computed.
- If the predictor space is $\mathcal{X}:=\mathbb{R}^{M}$, for one such computation we need $O(M)$ operations.
- We then keep track of the $K$ points with the smallest distance. So in total one needs $O(N M+N K)$ operations.


## Partial Distances / Lower Bounding

In practice, nearest neighbor classifiers often can be accelerated by several methods.

## Partial distances:

Compute the distance to each training point $x^{\prime}$ only partially, e.g.,

$$
d_{r}\left(x, x^{\prime}\right):=\left(\sum_{m=1}^{r}\left(x_{m}-x_{m}^{\prime}\right)^{2}\right)^{\frac{1}{2}}, \quad r \leq M
$$

As $d_{r}$ is non-decreasing in $r$, once $d_{r}\left(x, x^{\prime}\right)$ exceeds the $K$-th smallest distance computed so far, the training point $x^{\prime}$ can be dropped.

This is a heuristic:
it may accelerate computations, but it also may slow it down (as there are additional comparisons of the partial distances with the $K$ smallest distance).

## Outline

## 1. Distance Measures

## 2. K-Nearest Neighbor Models

## 3. Kernel Regression

## K-Nearest Neighbor is locally constant



Points generated by the model $y=\sin (4 x)+\mathcal{N}(0,1 / 3)$ with $x \sim \operatorname{unif}(0,1)$.

## K-Nearest Neighbor is locally constant



## K-Nearest Neighbor is locally constant

$K$-nearest neighbor models are

- based on discrete decisions if a point is a $K$-nearest neighbor or not,
- in effect, locally constant,
- and thus not continuous.


## Formulation using window functions

Discrete decisions can be captured by binary window functions, consider

$$
K\left(x, x_{0}\right):= \begin{cases}1, & \text { if }(x, y) \in N_{k}\left(x_{0}\right) \\ 0, & \text { otherwise }\end{cases}
$$

Then, using this formulation we can rewrite the KNN regressor as:

$$
\hat{y}\left(x_{0}\right)=\frac{\sum_{(x, y) \in X} K\left(x, x_{0}\right) y}{\sum_{(x, y) \in X} K\left(x, x_{0}\right)}
$$

instead of

$$
\hat{y}\left(x_{0}\right)=\frac{\sum_{(x, y) \in N_{k}\left(x_{0}\right)} y}{k}
$$

## On the window size

In $K$-nearest neighbor the size of the window varies from point to point: it depends on the density of the data:

- in dense parts the effective window size is small
- in sparse pars the effective window size is large

Alternatively, it is also possible to set the size of the windows to a constant $\lambda$, e.g.,

$$
K_{\lambda}\left(x, x_{0}\right):= \begin{cases}1, & \text { if }\left|x-x_{0}\right| \leq \lambda \\ 0, & \text { otherwise }\end{cases}
$$

## Kernel Regression

Instead of discrete windows, one typically uses continuous windows, i.e., continuous weights

$$
K\left(x, x_{0}\right)
$$

that reflect the distance of a training point $x$ to a prediction point $x_{0}$, called kernel, e.g.,

$$
K\left(x, x_{0}\right):= \begin{cases}1-\frac{\left|x-x_{0}\right|}{\lambda}, & \text { if }\left|x-x_{0}\right| \leq \lambda \\ 0, & \text { otherwise }\end{cases}
$$

Instead of a binary neighbor/not-neighbor decision, a continuous kernel captures a "degree of neighborship".

## Epanechnikov Kernel

Kernels are similarity measures: the closer two points, the larger the kernel value.

Epanechnikov kernel

$$
K_{\lambda}(x, y):=D\left(\frac{|x-y|}{\lambda}\right)
$$

with

$$
D(t):= \begin{cases}\frac{3}{4}\left(1-t^{2}\right), & t<1 \\ 0, & \text { otherwise }\end{cases}
$$

The constant $\lambda \in \mathbb{R}^{+}$is called bandwidth.

## More kernels

Tri-cube kernel

$$
D(t):= \begin{cases}\left(1-t^{3}\right)^{3}, & t<1 \\ 0, & \text { otherwise }\end{cases}
$$

Gaussian kernel

$$
D(t):=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}}
$$

The Epanechnikov and Tri-cube kernel have compact support $\left[x_{0}-\lambda, x_{0}+\lambda\right]$.

The Gaussian kernel has noncompact support, $\lambda$ acts as standard deviation.

## Kernels



## Example / Epanechnikov Kernel, $\lambda=0.2$



## Choosing the Bandwidth

If the bandwidth $\lambda$ is small
larger variance - as averaged over fewer points
smaller bias - as closer instances are used
$\Rightarrow$ risks to be too bumpy

If the bandwidth $\lambda$ is large
smaller variance - as averaged over more points larger bias - as instances further apart are used $\Rightarrow$ risks to be too rigid / over-smoothed

The bandwidth $\lambda$ is a parameter (sometimes called a hyperparameter) of the model that needs to be optimized / estimated by data.

## Example / Epanechnikov Kernel, various bandwidths



## Summary

(deshe'

- Simple classification and regression models can be built by
- averaging over target values (regression)
- counting the occurrences of the target class (classification) of training instances close by (measured in some distance measure).
- The nearest neighbor takes always a fixed number $K$ of nearest points into account.
- Alternatively, one also could weight points with some similarity measure (called kernel),
$\Rightarrow$ the model is called kernel regression and kernel classification.
- There are no learning tasks for these models, as simply all training instances are stored ("memory-based methods").
- Therefore, to compute predictions is more costly than for say linear models.

There are some acceleration techniques

- partial distances / lower bounding


## Further Readings

- [HTFF05, chapter 13.3, 2.3.2], [Mur12, chapter 1.4.2, 14.1+2+4], [JWHT13, chapter 2.2.3, ].


## References

$\square$ Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.
The elements of statistical learning: data mining, inference and prediction, volume 27. 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
An introduction to statistical learning.
Springer, 2013.
Kevin P. Murphy.
Machine learning: a probabilistic perspective.
The MIT Press, 2012

