Machine Learning

Machine Learning

A. Supervised Learning
A.7. Support Vector Machines (SVMs)

Lars Schmidt-Thieme, Nicolas Schilling

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1/1



Machine Learning

Outline

1. Separating Hyperplanes

2. Perceptron

3. Maximum Margin Separating Hyperplanes

=

Da

=]
Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2/1



Machine Learning

1. Separating Hyperplanes

Outline

1. Separating Hyperplanes

=

=] acr
Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1/1



Machine Learning 1. Separating Hyperplanes

NN
Hyperplanes “

Hyperplanes H are subsets of RP with dimensionality p — 1 and can be
modeled explicitly as

i
Hos = X €RP1(8,0) = —fo}, 6= | * |errier
A

We will write Hg shortly for Hg 5, (although [ is very relevant!).

» Hgis a point for p =1
» Hgis a line for p =2
» Hg is a plane for p =3
| 4

Hg is a hyperplane for higher dimensions
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Machine Learning 1. Separating Hyperplanes

. . . N
Example in two dimensions “

Recall that a line in R? is usually written as set of points (x1,x2) that
fulfill:

Xp =mxy + b
for some slope and intercept m, b € R
Rearranging the equation we get:
—b= mxy — X2 = <57X>

for 3 = (m,—1)" and By = b, which is identical to the formulation before.
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Machine Learning 1. Separating Hyperplanes

. . . B4
Example in three dimensions “
For two dimensional planes, one usually writes:

axy + bxp + cx3 = —d
Which, again, is the same for 3 = (a, b,c)' and By = d.

B is orthogonal to the plane, as:

<5’X_X,> = <B?X> - <67X/> = _B0+B0 =0

for any two points x,x" € Hg, thus 3 is orthogonal to any translation

vector within the plane and therefore is orthogonal to the plane. If we
normalize 3, then

B

Bl
is a normal vector to Hg
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Machine Learning 1. Separating Hyperplanes

P2
Hyperplanes “
The projection of a point x € R” onto Hg, i.e., the closest point on Hg to
X is given by

WHﬁ(X) — x <67 > +BO

R
Proof:

(i) First we show that the projected point is element of the hyperplane, i.e
X = T, (x) € Hg:

(B x — (B,x) + Bo
</377TH5(X)> _<Bv <B B) 5>

(B x (5, x) + Bo _

Thus, mh,(x) fulfills the criterion for a point to be located on Hg
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Machine Learning 1. Separating Hyperplanes

NN
Hyperplanes “

The projection of a point x € RP onto Hg, i.e., the closest point on Hg to
X is given by
67 x) + ﬂo
THg (X) 1= x — LB

(B, 8)

(i) We show that 74, (x) is the closest such point to x:
For any other point x’ € Hpg:

IIx = X[|? =(x = X', x = x') = (x = mx + 7x — X', x — 1x + 7x — X')
=(x —mx,x — x) + 2(x — wx,wx — X'} + (7x — X', w™x — X')
=[x — mx][? + 0+ [|mx — X'||?

as x — mx is proportional to 3 and mx and x” are on Hp.

Thus ||x — x[|?> > ||x — 7x||? and equality holds for x’ = 7x!
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Machine Learning 1. Separating Hyperplanes

Hyperplanes

The signed distance of a point x € RP to Hp is given by

<6, X> + BO
|1l
Proof:
</Ba > /60
X — X =
Therefore

R

2 <5,X>+50 <B7X>+BO
[Ix = mx][* =( B.5) B, .7 B)
<ﬁ7 >+50
:(<57X> + fo)?
18112
HX*7TX||I<5,X>+50
1]l

=(—5

o F
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Machine Learning 1. Separating Hyperplanes

Separating Hyperplanes
For given data

with a binary class label Y € {—1,+1}
a hyperplane Hg is called separating if

(Xl,)/l), (X2»Y2)a ceey (Xn7Yn)

yih(x;) >0, i=1,...,n, with h(x):=(8,x) + 5o
* o A
L g
o o,
4

[m]
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Machine Learning 1. Separating Hyperplanes

Linear Separable Data

The data is called linear separable if there exists such a separating
hyperplane.

In general, if there is one, there are many, for example:

0’0 000 A
o o * A a ¢ o . A 4
A A
* A A * A A
L 4 A L 4 A
* A A ( 4 A A

= If there is a choice, we need a criterion to narrow down which one we
want / is the best.
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Machine Learning 2. Perceptron
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Machine Learning 2. Perceptron

. N
Perceptron as Linear Model “

Perceptron is another name for a linear binary classification model (Rosenblatt
1958):

+1, x>0
Y (X) =sign h(X), with signx = 0, x=0
-1, x<0
h(X) =Po + (8, X) + €
that is very similar to the logistic regression model
Y(X) =argmaxp(Y =y | X)
y
eZLl Ber'

P(Y = +1‘X) =|OgIStIC(<X,ﬁ>) +e= m +€

p(Y = —1|X) =1 - p(¥ = +1|X)

as well as to linear discriminant analysis (LDA).

The perceptron does just provide class labels (x) and unscaled certainty factors

h(x), but no class probabilities p(Y | X).
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Machine Learning 2. Perceptron

. N
Perceptron as Linear Model “

The perceptron does just provide class labels §(x) and unscaled certainty
factors h(x), but no class probabilities p(Y | X).

Therefore, probabilistic fit/error criteria such as maximum likelihood
cannot be applied.

For perceptrons, the sum of the certainty factors of misclassified points is
used as error criterion:

n n

a(B.5o) = > |hsO)l=— D yiha(x)

=197y i=L.3i#yi
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Machine Learning 2. Perceptron

. N
Perceptron as Linear Model “

For learning, gradient descent is used:

9q(B, Bo) Z
—n = YiXi
08 i=1:9i2y;
29(8,0)  ~~

B = > i

i=L3i#yi

Instead of looking at all points at the same time,

stochastic gradient descent is applied where all points are looked at sequentially
(in a random sequence).

The update for a single point (x;, y;) then is

BUHD .20 4y

a(k+1) . Ak
(()+)::(())+ay’_

with a step length « (often called learning rate).
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Machine Learning 2. Perceptron

Perceptron Learning Algorithm

1 learn-perceptron(training data X, step length ) :
2 3 := arandom vector
3 [y := arandom value

4 do

5 erors:=0

6 for (x,y) € X (inrandom order) do
7 if y(Bo + (B,2)) <0

8 errors = errors + 1

9 B = B + ayr

1 Bo = Bo + ay

12 fi

13 od

14 WhE errors > 0
15 return (8, 5o)
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Machine Learning 2. Perceptron
P2

Perceptron: Example “
Let us have the data:

1 2 -1

X=14 1 y=11

2 2 1
We start with the initial hyperplane defined through

F=1-1)"  Bo=-2

which looks like this:

A o

/
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Machine Learning 2. Perceptron

NN
Perceptron: Example “

We sequentially check all instances in a random order for misclassification

(8,51) + fo = (1,~1) @ B

(B,%) + Bo = (1,—1) (‘D P

(8,58 + o = (1,-1) @ P

and update the parameters as soon as an error is detected (in this case at
x3). Let us use a learning rate of a = 1/4, then:

gnew — (11> +1/4x = <11> +1/4 @ = <16§5>
Bonew = Bo+ 1/4 =24 ]_/4 =-1.75
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Machine Learning 2. Perceptron

Perceptron: Example

Now let us check the new hyperplane:

(8™ xq) + A" = (1.5,—0.5) G) _175— 125

(8™, x2) + B = (1.5, —0.5) (i) —1.75=3.75

<,BneW,X3> + BOnew — (15, —05) (;) —1.75=0.25

And all instances are classified correctly, algorithm stops.

The correct setting of the learning rate « cannot be determined
beforehand and thus « is a hyperparameter of the method.
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Machine Learning 2. Perceptron

B
Perceptron Learning Algorithm: Properties “

For linear separable data the perceptron learning algorithm can be shown
to converge: it finds a separating hyperplane in a finite number of steps.

But there are many problems with this simple algorithm:

» If there are several separating hyperplanes,
there is no control about which one is found
(it depends on the starting values).

» If the gap between the classes is narrow,
it may take many steps until convergence.
» If the data are not separable,
the learning algorithm does not converge at all.
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Machine Learning 3. Maximum Margin Separating Hyperplanes

B
Maximum Margin Separating Hyperplanes “

Many of the problems of perceptrons can be overcome by designing a
better fit/error criterion.

0.0 0.0 0.0 A
o o, [ ta o o, [ha o o g\ 4
A A A

* A A * N A * A A
* A * A * A
* A A L 4 A A * A A

= We would probably choose the leftmost hyperplane, as it seems most
general.
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Machine Learning 3. Maximum Margin Separating Hyperplanes

B
Maximum Margin Separating Hyperplanes “

Many of the problems of perceptrons can be overcome by designing a
better fit/error criterion.

Maximum Margin Separating Hyperplanes use the width of the margin,
i.e., the distance of the closest points to the hyperplane as criterion:

maximize C

.r.t.y-M>C i=1,...,n
11c| — Y

B eR?

Bo €R
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Machine Learning 3. Maximum Margin Separating Hyperplanes

B
Maximum Margin Separating Hyperplanes “

As for any solutions 3, By also all positive scalar multiples fullfil the
equations, we can arbitrarily set

1
HBHZE

Then the problem can be reformulated as

1
minimize 5“5“2
w.r.t. yi(BU + (/37Xi>) Zla = 17'
B €RP
Bo €R

|

This problem is a convex optimization problem that can be solved using
Lagrange Multipliers.
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Merry Christmas and a happy new year!
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