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Machine Learning 1. Separating Hyperplanes

Hyperplanes

Hyperplanes H are subsets of Rp with dimensionality p − 1 and can be
modeled explicitly as

Hβ,β0 := {x ∈ Rp | 〈β, x〉 = −β0}, β =


β1
β2
...
βp

 ∈ Rp, β0 ∈ R

We will write Hβ shortly for Hβ,β0 (although β0 is very relevant!).

I Hβ is a point for p = 1

I Hβ is a line for p = 2

I Hβ is a plane for p = 3

I Hβ is a hyperplane for higher dimensions
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Machine Learning 1. Separating Hyperplanes

Example in two dimensions

Recall that a line in R2 is usually written as set of points (x1, x2) that
fulfill:

x2 = mx1 + b

for some slope and intercept m, b ∈ R

Rearranging the equation we get:

−b = mx1 − x2 = 〈β, x〉

for β = (m,−1)> and β0 = b, which is identical to the formulation before.
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Machine Learning 1. Separating Hyperplanes

Example in three dimensions
For two dimensional planes, one usually writes:

ax1 + bx2 + cx3 = −d

Which, again, is the same for β = (a, b, c)> and β0 = d .

β is orthogonal to the plane, as:

〈β, x − x ′〉 = 〈β, x〉 − 〈β, x ′〉 = −β0 + β0 = 0

for any two points x , x ′ ∈ Hβ, thus β is orthogonal to any translation
vector within the plane and therefore is orthogonal to the plane. If we
normalize β, then

n =
β

‖β‖
is a normal vector to Hβ
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Machine Learning 1. Separating Hyperplanes

Hyperplanes

The projection of a point x ∈ Rp onto Hβ, i.e., the closest point on Hβ to
x is given by

πHβ
(x) := x − 〈β, x〉+ β0

〈β, β〉 β

Proof:
(i) First we show that the projected point is element of the hyperplane, i.e.
πx := πHβ

(x) ∈ Hβ:

〈β, πHβ
(x)〉 =〈β, x − 〈β, x〉+ β0

〈β, β〉 β〉

=〈β, x〉 − 〈β, x〉+ β0
〈β, β〉 〈β, β〉 = −β0

Thus, πHβ
(x) fulfills the criterion for a point to be located on Hβ.
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Machine Learning 1. Separating Hyperplanes

Hyperplanes

The projection of a point x ∈ Rp onto Hβ, i.e., the closest point on Hβ to
x is given by

πHβ
(x) := x − 〈β, x〉+ β0

〈β, β〉 β

(ii) We show that πHβ
(x) is the closest such point to x :

For any other point x ′ ∈ Hβ:

||x − x ′||2 =〈x − x ′, x − x ′〉 = 〈x − πx + πx − x ′, x − πx + πx − x ′〉
=〈x − πx , x − πx〉+ 2〈x − πx , πx − x ′〉+ 〈πx − x ′, πx − x ′〉
=||x − πx ||2 + 0 + ||πx − x ′||2

as x − πx is proportional to β and πx and x ′ are on Hβ.
Thus ||x − x ′||2 ≥ ||x − πx ||2 and equality holds for x ′ = πx!
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Machine Learning 1. Separating Hyperplanes

Hyperplanes
The signed distance of a point x ∈ Rp to Hβ is given by

〈β, x〉+ β0
||β||

Proof:

x − πx =
〈β, x〉 − β0
〈β, β〉 β

Therefore

||x − πx ||2 =〈 〈β, x〉+ β0
〈β, β〉 β,

〈β, x〉+ β0
〈β, β〉 β〉

=(
〈β, x〉+ β0
〈β, β〉 )2〈β, β〉

=
(〈β, x〉+ β0)2

‖β‖2

||x − πx || =
〈β, x〉+ β0
||β||
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Machine Learning 1. Separating Hyperplanes

Separating Hyperplanes
For given data

(x1, y1), (x2, y2), . . . , (xn, yn)

with a binary class label Y ∈ {−1,+1}
a hyperplane Hβ is called separating if

yih(xi ) > 0, i = 1, . . . , n, with h(x) := 〈β, x〉+ β0
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Machine Learning 1. Separating Hyperplanes

Linear Separable Data

The data is called linear separable if there exists such a separating
hyperplane.

In general, if there is one, there are many, for example:

⇒ If there is a choice, we need a criterion to narrow down which one we
want / is the best.
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Machine Learning 2. Perceptron
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Machine Learning 2. Perceptron

Perceptron as Linear Model
Perceptron is another name for a linear binary classification model (Rosenblatt
1958):

Y (X ) = sign h(X ), with sign x =

 +1, x > 0
0, x = 0
−1, x < 0

h(X ) =β0 + 〈β,X 〉+ ε

that is very similar to the logistic regression model

Y (X ) = arg max
y

p(Y = y |X )

p(Y = +1 |X ) =logistic(〈X , β〉) + ε =
e
∑n

i=1 βiXi

1 + e
∑n

i=1 βiXi
+ ε

p(Y = −1 |X ) =1− p(Y = +1 |X )

as well as to linear discriminant analysis (LDA).

The perceptron does just provide class labels ŷ(x) and unscaled certainty factors

ĥ(x), but no class probabilities p̂(Y |X ).
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Machine Learning 2. Perceptron

Perceptron as Linear Model

The perceptron does just provide class labels ŷ(x) and unscaled certainty
factors ĥ(x), but no class probabilities p̂(Y |X ).

Therefore, probabilistic fit/error criteria such as maximum likelihood
cannot be applied.

For perceptrons, the sum of the certainty factors of misclassified points is
used as error criterion:

q(β, β0) :=
n∑

i=1:ŷi 6=yi

|hβ(xi )| = −
n∑

i=1:ŷi 6=yi

yihβ(xi )
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Machine Learning 2. Perceptron

Perceptron as Linear Model
For learning, gradient descent is used:

∂q(β, β0)

∂β
=−

n∑
i=1:ŷi 6=yi

yixi

∂q(β, β0)

∂β0
=−

n∑
i=1:ŷi 6=yi

yi

Instead of looking at all points at the same time,
stochastic gradient descent is applied where all points are looked at sequentially
(in a random sequence).
The update for a single point (xi , yi ) then is

β̂(k+1) :=β̂(k) + αyixi

β̂
(k+1)
0 :=β̂

(k)
0 + αyi

with a step length α (often called learning rate).
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Machine Learning 2. Perceptron

Perceptron Learning Algorithm

1 learn-perceptron(training data X, step length α) :

2 β̂ := a random vector
3 β̂0 := a random value
4 do
5 errors := 0
6 for (x, y) ∈ X (in random order) do
7 if y(β̂0 + 〈β̂, x〉) ≤ 0
8 errors := errors + 1

9 β̂ := β̂ + αyx

11 β̂0 := β̂0 + αy
12 fi
13 od
14 while errors > 0

15 return (β̂, β̂0)
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Machine Learning 2. Perceptron

Perceptron: Example
Let us have the data:

X =

1 2
4 1
2 2

 y =

−1
1
1


We start with the initial hyperplane defined through

β = (1,−1)> β0 = −2

which looks like this:
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Machine Learning 2. Perceptron

Perceptron: Example
We sequentially check all instances in a random order for misclassification

〈β, x1〉+ β0 = (1,−1)

(
1
2

)
− 2 = −3

〈β, x2〉+ β0 = (1,−1)

(
4
1

)
− 2 = 1

〈β, x3〉+ β0 = (1,−1)

(
2
2

)
− 2 = −2

and update the parameters as soon as an error is detected (in this case at
x3). Let us use a learning rate of α = 1/4, then:

βnew =

(
1
−1

)
+ 1/4 · x2 =

(
1
−1

)
+ 1/4 ·

(
2
2

)
=

(
1.5
−0.5

)
β0

new = β0 + 1/4 = −2 + 1/4 = −1.75
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Machine Learning 2. Perceptron

Perceptron: Example

Now let us check the new hyperplane:

〈βnew, x1〉+ β0
new = (1.5,−0.5)

(
1
2

)
− 1.75 = −1.25

〈βnew, x2〉+ β0
new = (1.5,−0.5)

(
4
1

)
− 1.75 = 3.75

〈βnew, x3〉+ β0
new = (1.5,−0.5)

(
2
2

)
− 1.75 = 0.25

And all instances are classified correctly, algorithm stops.

The correct setting of the learning rate α cannot be determined
beforehand and thus α is a hyperparameter of the method.
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Machine Learning 2. Perceptron

Perceptron Learning Algorithm: Properties

For linear separable data the perceptron learning algorithm can be shown
to converge: it finds a separating hyperplane in a finite number of steps.

But there are many problems with this simple algorithm:

I If there are several separating hyperplanes,
there is no control about which one is found
(it depends on the starting values).

I If the gap between the classes is narrow,
it may take many steps until convergence.

I If the data are not separable,
the learning algorithm does not converge at all.
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Outline

1. Separating Hyperplanes

2. Perceptron

3. Maximum Margin Separating Hyperplanes

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 1



Machine Learning 3. Maximum Margin Separating Hyperplanes

Maximum Margin Separating Hyperplanes

Many of the problems of perceptrons can be overcome by designing a
better fit/error criterion.

⇒ We would probably choose the leftmost hyperplane, as it seems most
general.
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Maximum Margin Separating Hyperplanes

Many of the problems of perceptrons can be overcome by designing a
better fit/error criterion.

Maximum Margin Separating Hyperplanes use the width of the margin,
i.e., the distance of the closest points to the hyperplane as criterion:

maximize C

w.r.t. yi
β0 + 〈β, xi 〉
||β|| ≥C , i = 1, . . . , n

β ∈Rp

β0 ∈R
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Maximum Margin Separating Hyperplanes
As for any solutions β, β0 also all positive scalar multiples fullfil the
equations, we can arbitrarily set

||β|| =
1

C

Then the problem can be reformulated as

minimize
1

2
||β||2

w.r.t. yi (β0 + 〈β, xi 〉) ≥1, i = 1, . . . , n

β ∈Rp

β0 ∈R

This problem is a convex optimization problem that can be solved using
Lagrange Multipliers.
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Merry Christmas and a happy new year!
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