Machine Learning

A. Supervised Learning A.8. Support Vector Machines (SVMs)

Lars Schmidt-Thieme, Nicolas Schilling

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Outline

1. Maximum Margin Separating Hyperplanes
2. Lagrange Multipliers
3. Sequential Minimal Optimization
4. Kernel SVM

Outline

1. Maximum Margin Separating Hyperplanes

2. Lagrange Multipliers

3. Sequential Minimal Optimization

4. Kernel SVM

Separating Hyperplanes

For given data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

with a binary class label $Y \in\{-1,+1\}$ a hyperplane H_{β} is called separating if

$$
y_{i} h\left(x_{i}\right)>0, \quad i=1, \ldots, n, \quad \text { with } h(x):=\langle\beta, x\rangle+\beta_{0}
$$

Linear Separable Data

The data is called linear separable if there exists such a separating hyperplane.

In general, if there is one, there are many, for example:

\Rightarrow If there is a choice, we need a criterion to narrow down which one we want / is the best.

Maximum Margin Separating Hyperplanes

For linearly seperable data we wanted to solve the following problem:

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|\beta\|^{2} \\
\text { w.r.t. } y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right) & \geq 1, \quad i=1, \ldots, n \\
\beta & \in \mathbb{R}^{p} \\
\beta_{0} & \in \mathbb{R}
\end{aligned}
$$

This problem is a convex optimization problem that can be solved using Lagrange Multipliers.

Maximum Margin Separating Hyperplanes

For non seperable data we want to find a hyperplane that has

- few number of points on the wrong side
- wrong points very close to the hyperplane

This can be modelled using slack variables ξ_{i} :

$$
\begin{aligned}
& \text { minimize } \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
& \text { w.r.t. } y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right) \geq 1-\xi_{i}, \quad i=1, \ldots, n \\
& \xi \geq 0 \\
& \beta \in \mathbb{R}^{p} \\
& \beta_{0} \in \mathbb{R}
\end{aligned}
$$

for some positive constant C

Outline

1. Maximum Margin Separating Hyperplanes

2. Lagrange Multipliers

3. Sequential Minimal Optimization

4. Kernel SVM

Introduction

Suppose we want to maximize a function $f\left(x_{1}, x_{2}\right)$ subject to an equality constraint:

$$
\max f\left(x_{1}, x_{2}\right) \quad \text { subject to } \quad g\left(x_{1}, x_{2}\right)=0
$$

- blue lines could be height lines
- red line is a hiking path
- find the highest point on the hiking path

Introduction

Suppose, we walk along the red line and search for points where f does not change (candidates for maxima)

- happens if we walk along a contour line of f
- happens if we reach a "level part" of f (region of constanf f)
- find the highest point on the hiking path

Introduction

If g follows a contour line of f it means

- g and a contour line of f are parallel
- then the gradients of g and f have to be parallel as well

Thus:

$$
\nabla_{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)=\lambda \nabla_{x_{1}, x_{2}} g\left(x_{1}, x_{2}\right)
$$

This equality still holds for the second case, if we have reached a level part of f, as then its gradient is zero and λ can be set to zero

Lagrange Function

The equality can be written within one equation:

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=f\left(x_{1}, x_{2}\right)+\lambda g\left(x_{1}, x_{2}\right)
$$

where we then solve:

$$
\nabla_{x_{1}, x_{2}, \lambda} \mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=0
$$

Thus we have a system of equations:

$$
\begin{aligned}
\nabla_{x_{1}} \mathcal{L}\left(x_{1}, x_{2}, \lambda\right) & =0 \\
\nabla_{x_{2}} \mathcal{L}\left(x_{1}, x_{2}, \lambda\right) & =0 \\
\nabla_{\lambda} \mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=g\left(x_{1}, x_{2}\right) & =0
\end{aligned}
$$

Dual Lagrange Function

The dual lagrange function is defined as:

$$
L(\lambda)=\inf _{x_{1}, x_{2}} \mathcal{L}\left(x_{1}, x_{2}, \lambda\right)
$$

Thus, we first solve

$$
\nabla_{x_{1}, x_{2}} \mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=0
$$

And then substitute the resulting x_{1} and x_{2} (which depend still on λ) into \mathcal{L} which yields the dual problem.

Example

Suppose we want to minimize:

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

subject to:

$$
2 x_{1}-x_{2}+3=0
$$

We have the following Lagrangian:

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}^{2}+x_{2}^{2}+\lambda\left(2 x_{1}-x_{2}+3\right)
$$

Computing the derivatives, setting them to zero and solving yields:

$$
\nabla_{x_{1}} \mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=2 x_{1}+2 \lambda=0 \quad \Longrightarrow \quad x_{1}=-\lambda
$$

and

$$
\nabla_{x_{2}} \mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=2 x_{2}-\lambda=0 \quad \Longrightarrow \quad x_{2}=\lambda / 2
$$

Example

We can input these solutions into the constraint to compute the final λ (which then yields the solution)

$$
-2 \lambda-\lambda / 2+3=0
$$

is equivalent to

$$
-4 \lambda-\lambda+6=0
$$

which yields the solution

$$
\lambda=6 / 5
$$

and thus we obtain

$$
x_{1}=-6 / 5 \quad x_{2}=3 / 5
$$

Example

We can also input these solutions into the Lagrangian to obtain the dual problem:

$$
L(\lambda)=(-\lambda)^{2}+(\lambda / 2)^{2}+\lambda(-2 \lambda-\lambda / 2+3)
$$

which we can then further simplify and maximize with respect to λ !

Lagrangian Function of SVM

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { w.r.t. } y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right) & \geq 1-\xi_{i}, \quad i=1, \ldots, n \\
\xi & \geq 0 \\
\beta & \in \mathbb{R}^{p} \\
\beta_{0} & \in \mathbb{R}
\end{aligned}
$$

The Lagrange function of this problem is

$$
\mathcal{L}:=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)-\left(1-\xi_{i}\right)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}
$$

with the multipliers

$$
\alpha_{i} \geq 0 \quad \text { and } \quad \mu_{i} \geq 0
$$

Lagrangian Function of SVM

$$
\mathcal{L}:=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)-\left(1-\xi_{i}\right)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}
$$

For an extremum it is required that

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \beta}=\beta-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \stackrel{!}{=} 0 \\
& \Rightarrow \beta=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
\end{aligned}
$$

Lagrangian Function of SVM

Moreover we have:

$$
\frac{\partial \mathcal{L}}{\partial \beta_{0}}=-\sum_{i=1}^{n} \alpha_{i} y_{i} \stackrel{!}{=} 0
$$

and we also have to derive with respect to ξ_{i}

$$
\frac{\partial \mathcal{L}}{\partial \xi_{i}}=C-\alpha_{i}-\mu_{i} \stackrel{!}{=} 0
$$

which yields

$$
\alpha_{i}=C-\mu_{i}
$$

which implies that

$$
\alpha_{i} \in[0, C] \quad \text { as } \quad \mu_{i} \geq 0
$$

Dual Lagrangian Function of SVM

Now we can put these solutions into the Lagrangian

$$
\beta=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \quad \alpha_{i}=C-\mu_{i}
$$

into

$$
\mathcal{L}:=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)-(1-\xi)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}
$$

which yields the dual problem

Dual Lagrangian Function of SVM

$$
\begin{aligned}
L= & \frac{1}{2}\left\langle\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}\right\rangle-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}, x_{i}\right\rangle\right)-\left(1-\xi_{i}\right)\right) \\
& +C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \mu_{i} \xi_{i} \\
= & \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i}-\sum_{i=1}^{n} \alpha_{i} y_{i} \beta_{0}-\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \\
& -\sum_{i=1}^{n} \alpha_{i} \xi_{i}+\sum_{i=1}^{n} \alpha_{i} \xi_{i} \\
= & -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i}
\end{aligned}
$$

Dual Problem

The dual problem is

$$
\begin{aligned}
\text { maximize } L & =-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i} \\
\text { w.r.t. } \sum_{i=1}^{n} \alpha_{i} y_{i} & =0 \\
\alpha_{i} & \leq C \\
\alpha_{i} & \geq 0
\end{aligned}
$$

with much simpler constraints.

Predicting with SVMs

1: procedure

PREDICT-SVM $\left(\alpha \in\left(\mathbb{R}_{0}^{+}\right)^{n}, \beta_{0} \in \mathbb{R}, \mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}\right)$
2: $\quad \hat{y}:=\beta_{0}$
3: \quad for $i:=1, \ldots, n$ with $\alpha_{i} \neq 0$ do
4: $\left.\quad \hat{y}:=\hat{y}+\alpha_{i} y_{i}\left\langle x_{i}, x\right\rangle\right)$
5: return \hat{y}

Note: \hat{y} yields the score/certainty factor, sign \hat{y} the predicted class.
From $\mathcal{D}^{\text {train }}$, only the support vectors $\left(x_{i}, y_{i}\right)$ (having $\alpha_{i}>0$) are required

Outline

1. Maximum Margin Separating Hyperplanes

2. Lagrange Multipliers

3. Sequential Minimal Optimization

4. Kernel SVM

Sequential Minimal Optimization (SMO)

SMO (Platt, 1999) iteratively solves sub problems to finally solve the whole problem. It repeats the following:

- pick two α parameters
- optimize one α through a Newton step
- compute the second α using the reduced equality constraint
- compute the bias term β_{0}

Box Constraints

Let α_{1} and α_{2} be two chosen α. Let us first optimize α_{2} and then α_{1}. Our constraint reduces to:

$$
\alpha_{1} y_{1}+\alpha_{2} y_{2}=-\sum_{i=3}^{n} \alpha_{i} y_{i}=: k
$$

$$
y_{1} \neq y_{2} \Rightarrow \alpha_{1}-\alpha_{2}=k
$$

$$
y_{1}=y_{2} \Rightarrow \alpha_{1}+\alpha_{2}=k
$$

There are two cases, either both associated instances have the same label $y_{1}=y_{2}$ or they don't.

Box Constraints

Let us assume both labels are not equal (left)

$$
y_{1} \neq y_{2} \Rightarrow \alpha_{1}-\alpha_{2}=k
$$

$$
y_{1}=y_{2} \Rightarrow \alpha_{1}+\alpha_{2}=k
$$

α_{2} is now bounded in an interval $[L, H]$ with:

$$
L=\max \left(0, \alpha_{2}-\alpha_{1}\right) \quad H=\min \left(C, C+\alpha_{2}-\alpha_{1}\right)
$$

Box Constraints

Let us assume both labels are equal (right)

$$
y_{1} \neq y_{2} \Rightarrow \alpha_{1}-\alpha_{2}=k
$$

$$
y_{1}=y_{2} \Rightarrow \alpha_{1}+\alpha_{2}=k
$$

α_{2} is now bounded in an interval $[L, H]$ with:

$$
L=\max \left(0, \alpha_{2}+\alpha_{1}-C\right) \quad H=\min \left(C, \alpha_{2}+\alpha_{1}\right)
$$

Box Constraints

SMO then computes the minimum of L along the direction of the constraint via:

$$
\alpha_{2}^{\text {new }}=\alpha_{2}+\frac{y_{2}\left(E_{1}-E_{2}\right)}{\eta}
$$

where

$$
\eta=\left\langle x_{1}, x_{1}\right\rangle+\left\langle x_{2}, x_{2}\right\rangle-2\left\langle x_{1}, x_{2}\right\rangle
$$

and

$$
E_{i}=\hat{y}_{i}-y_{i}
$$

the error on the i-th training instance.

Box Constraints

In order to fulfill the interval constraints for α_{2} we have to clip it:

$$
\alpha_{2}{ }^{\text {new,clipped }}= \begin{cases}H & \text { if } \quad \alpha_{2}{ }^{\text {new }} \geq H \\ \alpha_{2}^{\text {new }} & \text { if } \quad L \leq \alpha_{2} \\ L \quad \text { if } \quad \alpha_{2}{ }^{\text {new }}<H\end{cases}
$$

This way, we ensure that

$$
0 \leq \alpha_{2}{ }^{\text {new,clipped }} \leq C
$$

Computation of α_{1}

The new parameters have to fulfill the constraint:

$$
\alpha_{1}^{\text {new }}+s \alpha_{2}^{\text {new,clipped }}=k=\alpha_{1}+s \alpha_{2}
$$

We can reformulate this to

$$
\alpha_{1}{ }^{\text {new }}=\alpha_{1}+s\left(\alpha_{2}-\alpha_{2}{ }^{\text {new,clipped }}\right)
$$

Computation of the threshold

As a final step we have to compute the threshold β_{0}. It can be shown that $\beta_{0} \in\left[b_{1}, b_{2}\right]$ is feasible for:

$$
b_{1}=E_{1}+y_{1}\left(\alpha_{1}{ }^{\text {new }}-\alpha_{1}\right)\left\langle x_{1}, x_{1}\right\rangle+y_{2}\left(\alpha_{2}^{\text {new,clipped }}-\alpha_{2}\right)\left\langle x_{1}, x_{2}\right\rangle+\beta_{0}
$$

and

$$
b_{2}=E_{2}+y_{1}\left(\alpha_{1}^{\text {new }}-\alpha_{1}\right)\left\langle x_{1}, x_{2}\right\rangle+y_{2}\left(\alpha_{2}^{\text {new,clipped }}-\alpha_{2}\right)\left\langle x_{2}, x_{2}\right\rangle+\beta_{0}
$$

Outline

1. Maximum Margin Separating Hyperplanes

2. Lagrange Multipliers

3. Sequential Minimal Optimization

4. Kernel SVM

Support Vectors

For points on the right side of the hyperplane,

$$
y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)>1, \quad \xi_{i}=0
$$

then L is maximized by $\alpha_{i}=0: x_{i}$ is irrelevant.
For points in the margin as well as on the wrong side of the hyperplane,

$$
y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)=1-\xi_{i}, \quad \xi_{i}>0
$$

α_{i} is some finite value.
For points on the margin, i.e.,

$$
y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)=1, \quad \xi_{i}=0
$$

α_{i} is some finite value.
The data points x_{i} with $\alpha_{i}>0$ are called support vectors.

Decision Function

Due to

$$
\beta=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
$$

the decision function

$$
\hat{y}(x)=\operatorname{sign} \beta_{0}+\langle\beta, x\rangle
$$

can be expressed using the training data:

$$
\hat{y}(x)=\operatorname{sign} \beta_{0}+\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle x_{i}, x\right\rangle
$$

Only support vectors are required, as only for them $\alpha_{i} \neq 0$.
Both, the learning problem and the decision function can be expressed using an inner product / a similarity measure / a kernel $\left\langle x, \underline{\underline{x}}^{\prime}\right\rangle$.

High-Dimensional Embeddings / The "kernel trick"

 Example: we map points from R^{2} into the higher dimensional space \mathbb{R}^{6} via$$
h:\binom{x_{1}}{x_{2}} \mapsto\left(\begin{array}{c}
1 \\
\sqrt{2} x_{1} \\
\sqrt{2} x_{2} \\
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right)
$$

Then the inner product

$$
\begin{aligned}
\left\langle h\left(\binom{x_{1}}{x_{2}}\right), h\left(\binom{x_{1}^{\prime}}{x_{2}^{\prime}}\right)\right\rangle & =1+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime} \\
& =\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}
\end{aligned}
$$

can be computed without having to compute h explicitely !

Popular Kernels

Some popular kernels are:
linear kernel:

$$
K\left(x, x^{\prime}\right):=\left\langle x, x^{\prime}\right\rangle:=\sum_{i=1}^{n} x_{i} x_{i}^{\prime}
$$

polynomial kernel of degree d :

$$
K\left(x, x^{\prime}\right):=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{d}
$$

radial basis kernel / gaussian kernel :

$$
K\left(x, x^{\prime}\right):=e^{-\frac{\left\|x-x^{\prime}\right\|^{2}}{c}}
$$

neural network kernel / sigmoid kernel :

$$
K\left(x, x^{\prime}\right):=\tanh \left(a\left\langle x, x^{\prime}\right\rangle+b\right)
$$

Predicting with SVMs

1: procedure PREDICT-
$\operatorname{SVM}\left(\alpha \in\left(\mathbb{R}_{0}^{+}\right)^{n}, \beta_{0} \in \mathbb{R}, \mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}, K\right)$
2: $\quad \hat{y}:=\beta_{0}$
3: for $i:=1, \ldots, n$ with $\alpha_{i} \neq 0$ do
4: $\quad \hat{y}:=\hat{y}+\alpha_{i} y_{i} K\left(x_{i}, x\right)$
5: return \hat{y}

Note: \hat{y} yields the score/certainty factor, sign \hat{y} the predicted class.
From $\mathcal{D}^{\text {train }}$, only the support vectors $\left(x_{i}, y_{i}\right)$ (having $\alpha_{i}>0$) are required.

Summary (1/2)

- Binary classification problems with linear decision boundaries can be rephrased as finding a separating hyperplane.
- In the linear separable case, there are simple algorithms like perceptron learning to find such a separating hyperplane.
- If one requires the additional property that the hyperplane should have maximal margin, i.e., maximal distance to the closest points of both classes, then a quadratic optimization problem with inequality constraints arises.

Summary (2/2)

- Optimal hyperplanes can also be formulated for the linear inseparable case by allowing some points to be on the wrong side of the margin, but penalize for their distance from the margin. This also can be formulated as a quadratic optimization problem with inequality constraints.
- The final decision function can be computed in terms of inner products of the query points with some of the data points (called support vectors), which allows to bypass the explicit computation of high dimensional embeddings (kernel trick).

