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Machine Learning 1. Maximum Margin Separating Hyperplanes
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Machine Learning 1. Maximum Margin Separating Hyperplanes

Separating Hyperplanes
For given data

(x1, y1), (x2, y2), . . . , (xn, yn)

with a binary class label Y ∈ {−1,+1}
a hyperplane Hβ is called separating if

yih(xi ) > 0, i = 1, . . . , n, with h(x) := 〈β, x〉+ β0
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Machine Learning 1. Maximum Margin Separating Hyperplanes

Linear Separable Data

The data is called linear separable if there exists such a separating
hyperplane.

In general, if there is one, there are many, for example:

⇒ If there is a choice, we need a criterion to narrow down which one we
want / is the best.
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Machine Learning 1. Maximum Margin Separating Hyperplanes

Maximum Margin Separating Hyperplanes

For linearly seperable data we wanted to solve the following problem:

minimize
1

2
||β||2

w.r.t. yi (β0 + 〈β, xi 〉) ≥1, i = 1, . . . , n

β ∈Rp

β0 ∈R

This problem is a convex optimization problem that can be solved using
Lagrange Multipliers.
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Machine Learning 1. Maximum Margin Separating Hyperplanes

Maximum Margin Separating Hyperplanes

For non seperable data we want to find a hyperplane that has

I few number of points on the wrong side

I wrong points very close to the hyperplane

This can be modelled using slack variables ξi :

minimize
1

2
||β||2 + C

n∑
i=1

ξi

w.r.t. yi (β0 + 〈β, xi 〉) ≥1− ξi , i = 1, . . . , n

ξ ≥0

β ∈Rp

β0 ∈R

for some positive constant C
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Machine Learning 2. Lagrange Multipliers
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Machine Learning 2. Lagrange Multipliers

Introduction
Suppose we want to maximize a function f (x1, x2) subject to an equality
constraint:

max f (x1, x2) subject to g(x1, x2) = 0

I blue lines could be height lines
I red line is a hiking path
I find the highest point on the hiking path
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Machine Learning 2. Lagrange Multipliers

Introduction

Suppose, we walk along the red line and search for points where f does
not change (candidates for maxima)

I happens if we walk along a contour line of f

I happens if we reach a ”level part” of f (region of constanf f )

I find the highest point on the hiking path

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 1



Machine Learning 2. Lagrange Multipliers

Introduction

If g follows a contour line of f it means
I g and a contour line of f are parallel
I then the gradients of g and f have to be parallel as well

Thus:

∇x1,x2f (x1, x2) = λ∇x1,x2g(x1, x2)

This equality still holds for the second case, if we have reached a level part
of f , as then its gradient is zero and λ can be set to zero
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Machine Learning 2. Lagrange Multipliers

Lagrange Function

The equality can be written within one equation:

L(x1, x2, λ) = f (x1, x2) + λg(x1, x2)

where we then solve:
∇x1,x2,λL(x1, x2, λ) = 0

Thus we have a system of equations:

∇x1L(x1, x2, λ) = 0
∇x2L(x1, x2, λ) = 0

∇λL(x1, x2, λ) = g(x1, x2) = 0
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Machine Learning 2. Lagrange Multipliers

Dual Lagrange Function

The dual lagrange function is defined as:

L(λ) = inf
x1,x2
L(x1, x2, λ)

Thus, we first solve
∇x1,x2L(x1, x2, λ) = 0

And then substitute the resulting x1 and x2 (which depend still on λ) into
L which yields the dual problem.
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Machine Learning 2. Lagrange Multipliers

Example
Suppose we want to minimize:

f (x1, x2) = x1
2 + x2

2

subject to:
2x1 − x2 + 3 = 0

We have the following Lagrangian:

L(x1, x2, λ) = x1
2 + x2

2 + λ(2x1 − x2 + 3)

Computing the derivatives, setting them to zero and solving yields:

∇x1L(x1, x2, λ) = 2x1 + 2λ = 0 =⇒ x1 = −λ

and
∇x2L(x1, x2, λ) = 2x2 − λ = 0 =⇒ x2 = λ/2
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Machine Learning 2. Lagrange Multipliers

Example

We can input these solutions into the constraint to compute the final λ
(which then yields the solution)

−2λ− λ/2 + 3 = 0

is equivalent to
−4λ− λ+ 6 = 0

which yields the solution
λ = 6/5

and thus we obtain
x1 = −6/5 x2 = 3/5
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Machine Learning 2. Lagrange Multipliers

Example

We can also input these solutions into the Lagrangian to obtain the dual
problem:

L(λ) = (−λ)2 + (λ/2)2 + λ(−2λ− λ/2 + 3)

which we can then further simplify and maximize with respect to λ!
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Machine Learning 2. Lagrange Multipliers

Lagrangian Function of SVM

minimize
1

2
||β||2 + C

n∑
i=1

ξi

w.r.t. yi (β0 + 〈β, xi 〉) ≥1− ξi , i = 1, . . . , n

ξ ≥0

β ∈Rp

β0 ∈R

The Lagrange function of this problem is

L :=
1

2
||β||2 + C

n∑
i=1

ξi −
n∑

i=1

αi (yi (β0 + 〈β, xi 〉)− (1− ξi ))−
n∑

i=1

µiξi

with the multipliers
αi ≥ 0 and µi ≥ 0
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Machine Learning 2. Lagrange Multipliers

Lagrangian Function of SVM

L :=
1

2
||β||2 + C

n∑
i=1

ξi −
n∑

i=1

αi (yi (β0 + 〈β, xi 〉)− (1− ξi ))−
n∑

i=1

µiξi

For an extremum it is required that

∂L
∂β

=β −
n∑

i=1

αiyixi
!

= 0

⇒ β =
n∑

i=1

αiyixi
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Machine Learning 2. Lagrange Multipliers

Lagrangian Function of SVM

Moreover we have:
∂L
∂β0

= −
n∑

i=1

αiyi
!

= 0

and we also have to derive with respect to ξi

∂L
∂ξi

= C − αi − µi
!

= 0

which yields
αi = C − µi

which implies that
αi ∈ [0,C ] as µi ≥ 0
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Machine Learning 2. Lagrange Multipliers

Dual Lagrangian Function of SVM

Now we can put these solutions into the Lagrangian

β =
n∑

i=1

αiyixi ,
n∑

i=1

αiyi = 0, αi = C − µi

into

L :=
1

2
||β||2 + C

n∑
i=1

ξi −
n∑

i=1

αi (yi (β0 + 〈β, xi 〉)− (1− ξ))−
n∑

i=1

µiξi

which yields the dual problem
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Machine Learning 2. Lagrange Multipliers

Dual Lagrangian Function of SVM

L =
1

2
〈

n∑
i=1

αiyixi ,
n∑

j=1

αjyjxj〉 −
n∑

i=1

αi (yi (β0 + 〈
n∑

j=1

αjyjxj , xi 〉)− (1− ξi ))

+ C
n∑

i=1

ξi −
n∑

i=1

µiξi

=
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi , xj〉+
n∑

i=1

αi −
n∑

i=1

αiyiβ0 −
n∑

i=1

n∑
j=1

αiαjyiyj〈xi , xj〉

−
n∑

i=1

αiξi +
n∑

i=1

αiξi

=− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi , xj〉+
n∑

i=1

αi
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Machine Learning 2. Lagrange Multipliers

Dual Problem

The dual problem is

maximize L =− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi , xj〉+
n∑

i=1

αi

w.r.t.
n∑

i=1

αiyi =0

αi ≤C
αi ≥0

with much simpler constraints.
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Machine Learning 2. Lagrange Multipliers

Predicting with SVMs

1: procedure
predict-svm(α ∈ (R+

0 )n, β0 ∈ R,Dtrain := {(x1, y1), . . . , (xn, yn)})
2: ŷ := β0
3: for i := 1, . . . , n with αi 6= 0 do
4: ŷ := ŷ + αiyi 〈xi , x〉)
5: return ŷ
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Note: ŷ yields the score/certainty factor, sign ŷ the predicted class.
From Dtrain, only the support vectors (xi , yi ) (having αi > 0) are required.



Machine Learning 3. Sequential Minimal Optimization
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Machine Learning 3. Sequential Minimal Optimization

Sequential Minimal Optimization (SMO)

SMO (Platt, 1999) iteratively solves sub problems to finally solve the
whole problem. It repeats the following:

I pick two α parameters

I optimize one α through a Newton step

I compute the second α using the reduced equality constraint

I compute the bias term β0
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Machine Learning 3. Sequential Minimal Optimization

Box Constraints
Let α1 and α2 be two chosen α. Let us first optimize α2 and then α1. Our
constraint reduces to:

α1y1 + α2y2 = −
n∑

i=3

αiyi =: k

There are two cases, either both associated instances have the same label
y1 = y2 or they don’t.
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Machine Learning 3. Sequential Minimal Optimization

Box Constraints

Let us assume both labels are not equal (left)

α2 is now bounded in an interval [L,H] with:

L = max(0, α2 − α1) H = min(C ,C + α2 − α1)
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Machine Learning 3. Sequential Minimal Optimization

Box Constraints

Let us assume both labels are equal (right)

α2 is now bounded in an interval [L,H] with:

L = max(0, α2 + α1 − C ) H = min(C , α2 + α1)
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Machine Learning 3. Sequential Minimal Optimization

Box Constraints

SMO then computes the minimum of L along the direction of the
constraint via:

α2
new = α2 +

y2(E1 − E2)

η

where
η = 〈x1, x1〉+ 〈x2, x2〉 − 2〈x1, x2〉

and
Ei = ŷi − yi

the error on the i-th training instance.
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Machine Learning 3. Sequential Minimal Optimization

Box Constraints

In order to fulfill the interval constraints for α2 we have to clip it:

α2
new,clipped =


H if α2

new ≥ H

α2
new if L ≤ α2

new ≤ H

L if α2
new < H

This way, we ensure that

0 ≤ α2
new,clipped ≤ C
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Machine Learning 3. Sequential Minimal Optimization

Computation of α1

The new parameters have to fulfill the constraint:

α1
new + sα2

new,clipped = k = α1 + sα2

We can reformulate this to

α1
new = α1 + s(α2 − α2

new,clipped)
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Machine Learning 3. Sequential Minimal Optimization

Computation of the threshold

As a final step we have to compute the threshold β0. It can be shown that
β0 ∈ [b1, b2] is feasible for:

b1 = E1 + y1(α1
new − α1)〈x1, x1〉+ y2(α2

new,clipped − α2)〈x1, x2〉+ β0

and

b2 = E2 + y1(α1
new − α1)〈x1, x2〉+ y2(α2

new,clipped − α2)〈x2, x2〉+ β0
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Machine Learning 4. Kernel SVM
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Machine Learning 4. Kernel SVM

Support Vectors
For points on the right side of the hyperplane,

yi (β0 + 〈β, xi 〉) > 1, ξi = 0

then L is maximized by αi = 0: xi is irrelevant.

For points in the margin as well as on the wrong side of the hyperplane,

yi (β0 + 〈β, xi 〉) = 1− ξi , ξi > 0

αi is some finite value.

For points on the margin, i.e.,

yi (β0 + 〈β, xi 〉) = 1, ξi = 0

αi is some finite value.

The data points xi with αi > 0 are called support vectors.
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Machine Learning 4. Kernel SVM

Decision Function
Due to

β =
n∑

i=1

αiyixi ,

the decision function

ŷ(x) = signβ0 + 〈β, x〉

can be expressed using the training data:

ŷ(x) = signβ0 +
n∑

i=1

αiyi 〈xi , x〉

Only support vectors are required, as only for them αi 6= 0.

Both, the learning problem and the decision function can be expressed
using an inner product / a similarity measure / a kernel 〈x , x ′〉.
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Machine Learning 4. Kernel SVM

High-Dimensional Embeddings / The “kernel trick”
Example:
we map points from R2 into the higher dimensional space R6 via

h :

(
x1
x2

)
7→



1√
2x1√
2x2
x21
x22√
2x1x2


Then the inner product

〈h(

(
x1
x2

)
), h(

(
x ′1
x ′2

)
)〉 = 1 + 2x1x

′
1 + 2x2x

′
2 + x21x

′
1
2

+ x22x
′
2
2

+ 2x1x2x
′
1x
′
2

= (1 + x1x
′
1 + x2x

′
2)2

can be computed without having to compute h explicitely !
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Machine Learning 4. Kernel SVM

Popular Kernels
Some popular kernels are:

linear kernel:

K (x , x ′) := 〈x , x ′〉 :=
n∑

i=1

xix
′
i

polynomial kernel of degree d :

K (x , x ′) := (1 + 〈x , x ′〉)d

radial basis kernel / gaussian kernel :

K (x , x ′) := e−
||x−x′||2

c

neural network kernel / sigmoid kernel :

K (x , x ′) := tanh(a〈x , x ′〉+ b)
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Machine Learning 4. Kernel SVM

Predicting with SVMs

1: procedure predict-
svm(α ∈ (R+

0 )n, β0 ∈ R,Dtrain := {(x1, y1), . . . , (xn, yn)},K )
2: ŷ := β0
3: for i := 1, . . . , n with αi 6= 0 do
4: ŷ := ŷ + αiyiK (xi , x)

5: return ŷ
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Note: ŷ yields the score/certainty factor, sign ŷ the predicted class.
From Dtrain, only the support vectors (xi , yi ) (having αi > 0) are required.



Machine Learning 4. Kernel SVM

Summary (1/2)

I Binary classification problems with linear decision boundaries can be
rephrased as finding a separating hyperplane.

I In the linear separable case, there are simple algorithms like
perceptron learning to find such a separating hyperplane.

I If one requires the additional property that the hyperplane should
have maximal margin, i.e., maximal distance to the closest points of
both classes, then a quadratic optimization problem with inequality
constraints arises.
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Machine Learning 4. Kernel SVM

Summary (2/2)

I Optimal hyperplanes can also be formulated for the linear
inseparable case by allowing some points to be on the wrong side of
the margin, but penalize for their distance from the margin. This also
can be formulated as a quadratic optimization problem with
inequality constraints.

I The final decision function can be computed in terms of inner
products of the query points with some of the data points (called
support vectors), which allows to bypass the explicit computation of
high dimensional embeddings (kernel trick).
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