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Machine Learning 1. Independence and Conditional Independence

Joint Distribution

x1 : the sun shines

p(x1 = false) = 0.25
p(x1 = true) = 0.75

}
≡ p(x1) =

false true

0.25 0.75
= (0.25, 0.75)

x2 : it rains

p(x2 = false) = 0.67
p(x2 = true) = 0.33

}
≡ p(x2) =

false true

0.67 0.33
= (0.67, 0.33)

joint distribution:(
0.07 0.18
0.6 0.15

)
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Machine Learning 1. Independence and Conditional Independence

Stochastical Independence

Two variables x and y are stochastically independent, if for all possible
outcomes of x and y :

p(x , y) = p(x) · p(y)

Two subsets I and J of variables are stochastically independent, if:

p(x1, x2, . . . , xM) = p(xI ) · p(xJ), I , J ⊆ {1, . . . ,M}, I ∩ J = ∅

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 34

Note: xI := {xm1 , xm2 , . . . , xmK } for I := {m1,m2, . . . ,mK}.



Machine Learning 1. Independence and Conditional Independence

Stochastical Independence: Example

Are the two variables x1 and x2 of our previous example stochastically
independent?

For this, for all pairs of outcomes, the joint density has to factorize into
the single densities:

p(x1 = false, x2 = false) = 0.07 6= 0.17 = 0.25 · 0.67

= p(x1 = false) · p(x2 = false)

The variables in our example (for our artificial probabilities) are not
stochastically independent! For independence they would have to be:(

0.17 0.08
0.5 0.25

)
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Machine Learning 1. Independence and Conditional Independence

Chain Rule (Probability)

The joint density of M many variables can be written as product of
conditional densities:

p(x1, x2, . . . , xM) =p(x1)

· p(x2 | x1)

· p(x3 | x1, x2)

...

· p(xM | x1, x2, . . . , xM−1)

Examples: (
0.07 0.18
0.6 0.15

)
= (0.25, 0.75) ·

(
0.28 0.72
0.8 0.2

)
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Machine Learning 1. Independence and Conditional Independence

Conditional Independence

Two variables x , y are independent conditionally on variable z , if for all
outcomes of x , y , z :

p(x , y | z) = p(x | z) · p(y | z)

For independent variables, we use the following notation:

x ⊥ y | z
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Machine Learning 1. Independence and Conditional Independence

Conditional Independence: Example

Consider the common cold, in our world, it leads to the two diseases
coughing and headaches. Now consider a person that suffers from
coughing. Does the information help in deciding whether he suffers from
a headache?

Answer: Yes! The person for example could have a cold (as he is
coughing) and therefore has a higher probability for a headache.

Now consider that we already know that the person has a cold, then the
knowledge that he is coughing, does not influence the probability for a
headache.
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Machine Learning 1. Independence and Conditional Independence

Conditional Independence: Example

Consider two dice. Let x1 be the outcome of the first die, x2 is the output
of the second die.

Rolling of the dice is totally independent, i.e. x1 = 1 and x2 = 3 are
independent of each other.

However, if we know that their sum z = x1 + x2 the output of the first die
already defines the output of the second one, thus x1 and x2 are not
conditionally independent given their sum z .
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Machine Learning 1. Independence and Conditional Independence

Conditional Independence: Conclusions

If two events x1 and x2 are conditionally independent given z , then we can
equivalently write:

p(x1 | x2, z) = p(x1 | z)

Given z , the knowledge of x2 does not change the outcome of x1.

This knowledge can be applied to the chain rule in order to ”shorten” it.
Consider three variables x1, x2, x3 and x1 ⊥ x2 | x3

p(x1, x2, x3) = p(x1 | x2, x3) · p(x2 | x3) · p(x3)

= p(x1 | x3) · p(x2 | x3) · p(x3)
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Machine Learning 1. Independence and Conditional Independence

Conditional Independence: Conclusions

A probability density p defined for N many variables with (only) binary
outcomes has

2N

different states.
Saving the probability of all those states is computationally infeasible!

⇒ Using information on conditional independence among those variables
allows us to factor a joint density into smaller ones!

⇒ We only need to save smaller conditional distributions!
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Machine Learning 2. Separation in Graphs

Conditional Independence in Graphs

Independence of variables can be modelled using graphs where nodes
represent random variables and edges dependencies between these
variables:

I undirected graphs in Markov Networks

I u-separation models the independence relation

I directed graphs in Bayesian Networks

I d-separation models the independence relation
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Machine Learning 2. Separation in Graphs

U-Separation

Let X ,Y ,Z be three disjoint subsets of vertices. Then, X and Y are
u-separated by Z if there exists no path from X to Y that does not cross
Z .

I I is u-separated from A given E

I information about I does not
help us in deducing the state of
A if we already observe E

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 34



Machine Learning 2. Separation in Graphs

Directed Graph Terminology

I directed graph: G := (V ,E ), E ⊆ V × V
I V set called nodes / vertices
I E called edges, (v ,w) ∈ E edge from v to w .

I path: p ∈ V ∗: (pi , pi+1) ∈ E for all i

I parents: pa(v) := {w ∈ V | (w , v) ∈ E}
I children: ch(v) := {w ∈ V | (v ,w) ∈ E}
I ancestors: anc(v) := {w ∈ V | w  v}
I descendants: desc(v) := {w ∈ V | v  w}
I root: v without parents.

I leaf: v without children.
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4 5

2 3

1

[Mur12, fig. 10.1a]Note: δ(P) := 1 if proposition P is true, := 0 otherwise.



Machine Learning 2. Separation in Graphs

D-Separation: Motivation

Returning to our initial example of conditional independence:

I if we do not observe the variable
”cold”, information about
”coughing” would influence the
state of ”headache”

I as soon as we observe ”cold”,
”coughing” and ”headache”
should be d-separated
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Machine Learning 2. Separation in Graphs

D-separation: Motivation

And looking at another example:

I if we observe the variable ”flu”,
this does not tell us anything
about ”salmonella”

I as soon as we observe ”nausea”,
information about ”flu” helps to
deduce the state of ”salmonella”

I consider for example that we
observe that we do not have
the flu but suffer from nausea,
then we have to be infected by
salmonella
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Machine Learning 2. Separation in Graphs

D-separation: Definition

Let a chain p be any enumeration of vertices, where consecutive vertices
have to share an edge (direction does not matter). Then we call a subchain

pi−1 → pi ← pi+1

a head-to-head meeting.

We say that the subchain (pi−1, pi , pi+1) is blocked by the vertices Z at
position i if:

I pi ∈ Z if the subchain is not a head-to-head meeting

I pi /∈ Z ∪ anc(Z ) if the subchain is a head-to-head meeting

Then, X and Y are d-separated by Z if all chains from X to Y are
blocked.
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Machine Learning 2. Separation in Graphs

D-separation: Example

I the chain ABE is blocked by
Z = {B} as ABE is not a
head-to-head meeting

I are A and D d-separated by
Z = {B}?

A B

C

D

E F

G
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Machine Learning 2. Separation in Graphs

D-Separation: Subchains
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Machine Learning 3. Examples of Bayesian Networks

Bayesian Networks

A Bayesian Network is a set of conditional probability
distributions/densities

p(x | pa(x))

such that the associated graph defined by

V :={1, . . . ,M}
E :={(n,m) | m ∈ V , n ∈ pa(m)}

is a DAG.
A Bayesian network defines a factorization of the joint distribution

p(x1, . . . , xM) =
M∏

m=1

p(xm | xpa(m))
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Machine Learning 3. Examples of Bayesian Networks

Bayesian Networks / Example
For the DAG below,

p(x1, x2, x3, x4, x5) = p(x1) p(x2 | x1) p(x3 | x1) p(x4 | x2, x3) p(x5 | x3)

If

I all variables are binary and

I all CPDs given as conditional probability tables (CPTs),

then the BN is defined by the following 5 CPTs:

x1

0 . . .
1 . . .

x1

x2 0 1
0 . . . . . .
1 . . . . . .

x1

x3 0 1
0 . . . . . .
1 . . . . . .

x2 0 1
x3 0 1 0 1

x4 0 . . . . . . . . . . . .
1 . . . . . . . . . . . .

x3

x5 0 1
0 . . . . . .
1 . . . . . .
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1

[Mur12, fig. 10.1a]



Machine Learning 3. Examples of Bayesian Networks

Medical Diagnosis

I bipartite graph

I observed variables x1, . . . , xM (symptoms)

I hidden variables z1, . . . , zK (diseases / causes)

p(x1, . . . , xM , z1, . . . , zM) =
K∏

k=1

p(zk)
M∏

m=1

p(xm | zpa(m))

h1 h2 h3

v1 v2 v3 v4 v5

1
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[Mur12, fig. 10.5b]Note: In the diagram z is called h and x is called v .



Machine Learning 3. Examples of Bayesian Networks

Markov Models

first order:

p(x1, . . . , xM) = p(x1)p(x2 | x1)p(x3 | x2) · · · p(xM | xM−1)

= p(x1)
M−1∏
m=1

p(xm+1 | xm)

x1 x2 x3

· · ·
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[Mur12, fig. 10.3a]



Machine Learning 3. Examples of Bayesian Networks

Markov Models / Second Order

second order:

p(x1, . . . , xM) = p(x1, x2)p(x3 | x1, x2)p(x4 | x2, x3) · · · p(xM | xM−2, xM−1)

= p(x1, x2)
M−1∏
m=2

p(xm+1 | xm−1, xm)

x1 x2 x3 x4

· · ·
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Machine Learning 3. Examples of Bayesian Networks

Naive Bayes Classifier

p(y , x1, . . . , xM) = p(y)p(x1 | y)p(x2 | y) · · · p(xM | y)

= p(y)
M∏

m=1

p(xm | y)

I Assumption: Given the class
label y , all features are
conditionally independent

I simple to compute

I maybe flawed by too strong
independence assumption

Y

X1 X2 X3 X4

Naive Bayes Classifier

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 34

[Mur12, fig. 10.2]



Machine Learning 4. Inference

Outline

1. Independence and Conditional Independence

2. Separation in Graphs

3. Examples of Bayesian Networks

4. Inference

5. Learning

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 34



Machine Learning 4. Inference

The Probabilistic Inference Problem
Given

I a Bayesian model θ := G = (V ,E ),
I a query consisting of

I a set X := {x1, . . . , xM} ⊆ V of predictor variables
(aka observed, visible variables)

I with a value vm for each xm (m = 1, . . . ,M) and
I a set Y := {y1, . . . , yJ} ⊆ V of target variables

(aka query variables),
with X ∩ Y = ∅,

compute

p(Y | X = v ; θ) := p(y1, . . . , yJ | x1 = v1, x2 = v2, . . . , xM = vM ; θ)

= (p(y1 = w1, . . . , yJ = wJ | x1 = v1, x2 = v2, . . . , xM = vM ; θ))w1,...,wJ

Variables that are neither predictor variables nor target variables are called
nuisance variables.
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Machine Learning 4. Inference

Inference Without Nuisance Variables

Without nuisance variables: V = X ∪̇Y .

p(Y | X = v ; θ)
def
=

p(X = v ,Y ; θ)

p(X = v ; θ)
=

p(X = v ,Y ; θ)∑
w p(X = v ,Y = w ; θ)

I first, clamp predictors X to their observed values v ,

I then, normalize p(X = v ,Y ; θ) to sum to 1 (over Y ).

I p(X = v ; θ) likelihood of the data / probability of evidence
is a constant.
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Note: Summation over w is over all possible values of variables Y .



Machine Learning 4. Inference

Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no
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Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

p(Y = yes) = 0.5
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Machine Learning 4. Inference

Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

p(X1 = search | Y = yes) = 0.5 p(X1 = search | Y = no) = 0.0

p(X1 = ad | Y = yes) = 0.25 p(X1 = ad | Y = no) = 0.5

p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5
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Machine Learning 4. Inference

Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0
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Machine Learning 4. Inference

Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0
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Machine Learning 4. Inference

Example / Model Parameters p(Y = yes) = 0.5

p(X1 = search | Y = yes) = 0.5 p(X1 = search | Y = no) = 0.0

p(X1 = ad | Y = yes) = 0.25 p(X1 = ad | Y = no) = 0.5

p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0

Will a visitor with X1 =ad, X2=once, X3=10 buy?
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Machine Learning 4. Inference

Example / Model Parameters p(Y = yes) = 0.5

p(X1 = search | Y = yes) = 0.5 p(X1 = search | Y = no) = 0.0

p(X1 = ad | Y = yes) = 0.25 p(X1 = ad | Y = no) = 0.5

p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0

Will a visitor with X1 =ad, X2=once, X3=10 buy?

qyes = q(Y = yes | X1 = ad,X2 = once,X3 = 10)

= p(Y = yes) p(X1 = ad | Y = yes)

p(X2 = once | Y = yes) p(X3 = 10) | Y = yes)

= 0.5 · 0.25 · 0.5 · 0.25 = 0.015625
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Machine Learning 4. Inference

Example / Model Parameters p(Y = yes) = 0.5
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p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0

Will a visitor with X1 =ad, X2=once, X3=10 buy?

qno = q(Y = no | X1 = search,X2 = once,X3 = 10)

= p(Y = no) p(X1 = ad | Y = no)

p(X2 = once | Y = no) p(X3 = 10) | Y = no)

= 0.5 · 0.5 · 1.0 · 0.5 = 0.125
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Example / Model Parameters p(Y = yes) = 0.5

p(X1 = search | Y = yes) = 0.5 p(X1 = search | Y = no) = 0.0

p(X1 = ad | Y = yes) = 0.25 p(X1 = ad | Y = no) = 0.5

p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0

Will a visitor with X1 =ad, X2=once, X3=10 buy?

p(Y = yes | X1 = ad,X2 = once,X3 = 10) =
qyes

qyes + qno

=
0.015625

0.015625 + 0.125
= 0.111
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Machine Learning 4. Inference

Complexity of Inference

I for simplicity assume
I all M predictor variables are nominal with L levels,
I all K nuisance variables are nominal with L levels,
I a single target variable: Y = {y}, J = 1

also nominal with L levels.

I without (Conditional) Independencies:
I full table p requires LM+K+1 − 1 cells storage.
I inference requires O(LK+1) operations.

I for each Y = w sum over all LK many Z = u.

I with (Conditional) Independencies / Bayesian network:
I CPDs p require O((M + K + 1)Lmax indegree+1) cells storage.
I inference requires O((K + 1)Ltreewidth+1) operations.

I treewidth=1 for a chain!
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Machine Learning 5. Learning

Outline

1. Independence and Conditional Independence

2. Separation in Graphs

3. Examples of Bayesian Networks

4. Inference

5. Learning
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Machine Learning 5. Learning

Learning Bayesian Networks

I parameter learning: given
I the structure of the network (graph G ) and
I a regularization penalty Reg(θ),
I data x1, . . . , xN ,

learn the CPDs p.

θ̂ := arg max
θ

N∑
n=1

log p(xn; θ) + Reg(θ)

I structure learning: given
I data,

learn the structure G and the CPDs p.
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Machine Learning 5. Learning

Bayesian Approach

I in the Bayesian approach, parameters are also considered to be
random variables, thus,

I learning is just a special type of inference
(with the parameters as targets as we have done for Naive Bayes)

I information about the distribution of the parameters before seeing the
data is required (prior distribution p(θ))

I parameter learning: given
I the structure of the network (graph G ) and
I a prior distribution p(θ) of the parameters,
I data x1, . . . , xN ,

learn the CPDs p.

θ̂ := arg max
θ

N∑
n=1

log p(xn; θ) + log p(θ)
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Machine Learning 5. Learning

Outlook: Bayesian Networks Lecture

In the lecture on Bayesian Networks we have a closer look at:

I Probability Calculus

I Separation in Graphs

I Inference Algorithms

I Learning Algorithms

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 34



Machine Learning 5. Learning

Summary
I Bayesian Networks define a joint probability distribution by a

factorization of conditional probability distributions (CPDs)
p(xn | pa(xn))

I Conditions pa(m) form a DAG.
I For nominal variables, all CPDs can be represented as tables (CPTs).
I Storage complexity is O(Lmax indegree+1) (instead of O(LM)).

I Many model classes essentially are Bayesian networks:
I Naive Bayes classifier, Markov Models, Hidden Markov Models (HMMs)

I Inference in BN means to compute the (marginal joint) distribution
of target variables given observed evidence of some predictor
variables.

I A Bayesian network can answer queries for arbitrary targets
(not just a predefined one as most predictive models).

I Nuisance variables (for a query) are variables neither observed nor
used as targets.

I Inference with nuisance variables can be done efficiently for DAGs with
small tree width.
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Machine Learning 5. Learning

Summary (2/2)

I Learning BN has to distinguish between
I parameter learning: learn just the CPDs for a given graph, vs.
I structure learning: learn both, graph and CPDs.

I Parameter learning the maximum aposteriori (MAP) for BN with
CPTs and Dirichlet prior can be done simply by counting the
frequencies of families in the data.

I Some/most conditional independence assumptions are coded in the
graph and can be read off by d-separation.
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Machine Learning

Further Readings

I [Mur12, chapter 10].
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