

#### Machine Learning A. Supervised Learning A.8. A First Look at Bayesian and Markov Networks

Lars Schmidt-Thieme, Nicolas Schilling

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

#### Outline



- 1. Independence and Conditional Independence
- 2. Separation in Graphs
- 3. Examples of Bayesian Networks
- 4. Inference
- 5. Learning

#### Outline



#### 1. Independence and Conditional Independence

- 2. Separation in Graphs
- 3. Examples of Bayesian Networks
- 4. Inference
- 5. Learning

・ロト ・日・・ヨト ・ヨト ・ヨー シック・

#### Joint Distribution



 $x_1$ : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$
 
$$= p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$$

シック 単則 ふゆをえばや (日本)

#### Joint Distribution



 $x_1$ : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$
  $= p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$ 

 $x_2$ : it rains

$$p(x_2 = \text{false}) = 0.67 p(x_2 = \text{true}) = 0.33$$
 
$$= p(x_2) = \begin{vmatrix} \text{false true} \\ 0.67 & 0.33 \end{vmatrix} = (0.67, 0.33)$$

・ロト・4日ト・4日ト・4日ト 日日・9々や

#### Joint Distribution



 $x_1$ : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$
 
$$= p(x_1) = \begin{vmatrix} \text{false true} \\ 0.25 & 0.75 \end{vmatrix} = (0.25, 0.75)$$

 $x_2$ : it rains

$$p(x_2 = \text{false}) = 0.67 p(x_2 = \text{true}) = 0.33$$
  $\ge p(x_2) = \begin{vmatrix} \text{false true} \\ 0.67 & 0.33 \end{vmatrix} = (0.67, 0.33)$ 

joint distribution:

$$\begin{array}{l} p(x_1 = \mathsf{false}, x_2 = \mathsf{false}) &= 0.07 \\ p(x_1 = \mathsf{false}, x_2 = \mathsf{true}) &= 0.18 \\ p(x_1 = \mathsf{true}, x_2 = \mathsf{false}) &= 0.6 \\ p(x_1 = \mathsf{true}, x_2 = \mathsf{true}) &= 0.15 \end{array} \right\} \equiv \left( \begin{array}{c} 0.07 & 0.18 \\ 0.6 & 0.15 \end{array} \right)$$

もうてい 正則 ふかくえや ふむやふり

#### Stochastical Independence



Two variables x and y are **stochastically independent**, if for all possible outcomes of x and y:

$$p(x,y) = p(x) \cdot p(y)$$

Two subsets I and J of variables are stochastically independent, if:

$$p(x_1, x_2, \ldots, x_M) = p(x_I) \cdot p(x_J), \quad I, J \subseteq \{1, \ldots, M\}, I \cap J = \emptyset$$

Note:  $x_I := \{x_{m_1}, x_{m_2}, \dots, x_{m_K}\}$  for  $I := \{m_1, m_2, \dots, m_K\}$ . Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany 2 / 34

#### Stochastical Independence: Example



Are the two variables  $x_1$  and  $x_2$  of our previous example stochastically independent?

For this, for all pairs of outcomes, the joint density has to factorize into the single densities:

$$\begin{aligned} p(x_1 = \mathsf{false}, x_2 = \mathsf{false}) &= 0.07 \neq 0.17 = 0.25 \cdot 0.67 \\ &= p(x_1 = \mathsf{false}) \cdot p(x_2 = \mathsf{false}) \end{aligned}$$

The variables in our example (for our artificial probabilities) are not stochastically independent! For independence they would have to be:

 $\left(\begin{array}{cc} 0.17 & 0.08 \\ 0.5 & 0.25 \end{array}\right)$ 

・ロト ・日・ ・ヨト ・ヨト ・ヨー シッペー

## Chain Rule (Probability)



The joint density of M many variables can be written as product of conditional densities:

$$p(x_1, x_2, ..., x_M) = p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_1, x_2) \vdots \cdot p(x_M \mid x_1, x_2, ..., x_{M-1})$$

Examples:

$$\left(\begin{array}{cc} 0.07 & 0.18 \\ 0.6 & 0.15 \end{array}\right) = (0.25, 0.75) \cdot \left(\begin{array}{cc} 0.28 & 0.72 \\ 0.8 & 0.2 \end{array}\right)$$

・ロト・(中下・(中下・(中下・)))

## Chain Rule (Probability)



The joint density of M many variables can be written as product of conditional densities:

$$p(x_1, x_2, ..., x_M) = p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_1, x_2) \vdots \cdot p(x_M \mid x_1, x_2, ..., x_{M-1})$$

Examples:

$$\left(\begin{array}{cc} 0.17 & 0.08 \\ 0.5 & 0.25 \end{array}\right) = (0.25, 0.75) \cdot \left(\begin{array}{cc} 0.67 & 0.33 \\ 0.67 & 0.33 \end{array}\right)$$

・ロト ・日ト ・ヨト ・ヨト ・ヨー のへで

#### Conditional Independence



Two variables x, y are **independent conditionally on variable** z, if for all outcomes of x, y, z:

$$p(x, y \mid z) = p(x \mid z) \cdot p(y \mid z)$$

For independent variables, we use the following notation:

$$x \perp y \mid z$$

うせん 正則 スポッスポッスポッスロッ

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 34

#### Conditional Independence: Example



Consider the common **cold**, in our world, it leads to the two diseases **coughing** and **headaches**. Now consider a person that suffers from **coughing**. Does the information help in deciding whether he suffers from a **headache**?

**Answer:** Yes! The person for example could have a **cold** (as he is **coughing**) and therefore has a higher probability for a **headache**.

Now consider that we already know that the person has a **cold**, then the knowledge that he is **coughing**, **does not influence** the probability for a **headache**.

A ロ ト A 団 ト A 団 ト A 団 ト A 団 ト A O A O



#### Conditional Independence: Example

Consider two dice. Let  $x_1$  be the outcome of the first die,  $x_2$  is the output of the second die.

Rolling of the dice is **totally independent**, i.e.  $x_1 = 1$  and  $x_2 = 3$  are independent of each other.

However, if we know that their sum  $z = x_1 + x_2$  the output of the first die already defines the output of the second one, thus  $x_1$  and  $x_2$  are **not** conditionally independent given their sum z.

・ロト・4日ト・4日ト・4日ト 日日・99(で)

#### Universiter Fildesheim

#### Conditional Independence: Conclusions

If two events  $x_1$  and  $x_2$  are conditionally independent given z, then we can equivalently write:

$$p(x_1 | x_2, z) = p(x_1 | z)$$

Given z, the knowledge of  $x_2$  does not change the outcome of  $x_1$ .

This knowledge can be applied to the chain rule in order to "shorten" it. Consider three variables  $x_1, x_2, x_3$  and  $x_1 \perp x_2 \mid x_3$ 

$$p(x_1, x_2, x_3) = p(x_1 \mid x_2, x_3) \cdot p(x_2 \mid x_3) \cdot p(x_3)$$
  
=  $p(x_1 \mid x_3) \cdot p(x_2 \mid x_3) \cdot p(x_3)$ 

シック・目前 (日本)(日本)(日本)(日本)



#### Conditional Independence: Conclusions

A probability density p defined for N many variables with (only) binary outcomes has  $2^N$ 

different states.

Saving the probability of all those states is **computationally infeasible**!

- $\Rightarrow$  Using information on conditional independence among those variables allows us to factor a joint density into smaller ones!
- $\Rightarrow$  We only need to save smaller conditional distributions!

もうてい 正則 ふかく ふやく (型を) とう

#### Outline



- 1. Independence and Conditional Independence
- 2. Separation in Graphs
- 3. Examples of Bayesian Networks
- 4. Inference
- 5. Learning

・ロト ・日・・ヨト ・ヨト ・ヨー シッペー

Machine Learning 2. Separation in Graphs

#### Conditional Independence in Graphs



Independence of variables can be modelled using graphs where nodes represent random variables and edges dependencies between these variables:

- undirected graphs in Markov Networks
  - u-separation models the independence relation
- directed graphs in Bayesian Networks
  - d-separation models the independence relation

#### **U-Separation**



Let X, Y, Z be three disjoint subsets of vertices. Then, X and Y are **u-separated** by Z if there exists no path from X to Y that does not cross Z.

- I is u-separated from A given E
- information about *I* does not help us in deducing the state of *A* if we already observe *E*



## Directed Graph Terminology

- directed graph:  $G := (V, E), E \subseteq V \times V$ 
  - V set called nodes / vertices
  - *E* called **edges**,  $(v, w) \in E$  edge from *v* to *w*.
- ▶ path:  $p \in V^*$ :  $(p_i, p_{i+1}) \in E$  for all i
- ▶ parents:  $pa(v) := \{w \in V \mid (w, v) \in E\}$
- children:  $ch(v) := \{w \in V \mid (v, w) \in E\}$
- ancestors:  $\operatorname{anc}(v) := \{ w \in V \mid w \rightsquigarrow v \}$
- descendants: desc(v) := { $w \in V | v \rightsquigarrow w$ }
- **root**: *v* without parents.
- ▶ **leaf**: *v* without children.

Note:  $\delta(P) := 1$  if proposition P is true, := 0 otherwise.

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

= '~~~





Machine Learning 2. Separation in Graphs

#### D-Separation: Motivation

Returning to our initial example of conditional independence:

- if we do not observe the variable "cold", information about "coughing" would influence the state of "headache"
- as soon as we observe "cold", "coughing" and "headache" should be d-separated







#### D-separation: Motivation

And looking at another example:

- if we observe the variable "flu", this does not tell us anything about "salmonella"
- as soon as we observe "nausea", information about "flu" helps to deduce the state of "salmonella"
- consider for example that we observe that we **do not** have the flu but suffer from nausea, then we have to be infected by salmonella





Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

#### D-separation: Definition



Let a chain p be any enumeration of vertices, where consecutive vertices have to share an edge (direction does not matter). Then we call a subchain

$$p_{i-1} \rightarrow p_i \leftarrow p_{i+1}$$

#### a head-to-head meeting.

We say that the subchain  $(p_{i-1}, p_i, p_{i+1})$  is blocked by the vertices Z at position *i* if:

- $p_i \in Z$  if the subchain is not a head-to-head meeting
- ▶  $p_i \notin Z \cup \operatorname{anc}(Z)$  if the subchain is a head-to-head meeting

## Then, X and Y are d-separated by Z if all chains from X to Y are blocked.

・ロット (四マ・山田) (日) (日)

Machine Learning 2. Separation in Graphs

#### D-separation: Example

- ► the chain ABE is blocked by Z = {B} as ABE is not a head-to-head meeting
- are A and D d-separated by  $Z = \{B\}$ ?





◎ ▶ ▲ ミ ▶ ▲ ミ ▶ ニ ミ ⊨ … の < ○

#### D-Separation: Subchains





シック・目前、(ボッ・(ボッ・(型))、(ロ)

Machine Learning 2. Separation in Graphs

#### D-Separation: Subchains





・ロト・4日ト・4日ト・4日ト 日日・99(で)

#### Outline



- 1. Independence and Conditional Independence
- 2. Separation in Graphs
- 3. Examples of Bayesian Networks
- 4. Inference
- 5. Learning

・ロト・A型ト・A型ト・A型ト AUL
・
の々で
・

#### Bayesian Networks



A Bayesian Network is a set of **conditional probability distributions/densities** 

 $p(x \mid pa(x))$ 

such that the associated graph defined by

$$V := \{1, \dots, M\}$$
  
 $E := \{(n, m) \mid m \in V, n \in pa(m)\}$ 

is a DAG.

A Bayesian network defines a factorization of the joint distribution

$$p(x_1,\ldots,x_M) = \prod_{m=1}^M p(x_m \mid x_{\mathsf{pa}(m)})$$

#### Universiter Fildesheift

# Bayesian Networks / Example For the DAG below,

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2, x_3) p(x_5 \mid x_3)$ 



Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 34

# Universiter.

#### Bayesian Networks / Example For the DAG below,

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2, x_3) p(x_5 \mid x_3)$ 

lf

- all variables are binary and
- ► all CPDs given as **conditional probability tables (CPTs)**, then the BN is defined by the following 5 CPTs:



## Medical Diagnosis

- bipartite graph
- observed variables  $x_1, \ldots, x_M$  (symptoms)
- ▶ hidden variables  $z_1, \ldots, z_K$  (diseases / causes)

$$p(x_1,\ldots,x_M,z_1,\ldots,z_M) = \prod_{k=1}^K p(z_k) \prod_{m=1}^M p(x_m \mid z_{\mathsf{pa}(m)})$$



Note: In the diagram z is called h and x is called v.

[Mur12, fig. 10.5b]





#### Markov Models



first order:

$$p(x_1, \dots, x_M) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_M \mid x_{M-1})$$
$$= p(x_1) \prod_{m=1}^{M-1} p(x_{m+1} \mid x_m)$$

#### Markov Models / Second Order



second order:

$$p(x_1, \dots, x_M) = p(x_1, x_2) p(x_3 \mid x_1, x_2) p(x_4 \mid x_2, x_3) \cdots p(x_M \mid x_{M-2}, x_{M-1})$$
$$= p(x_1, x_2) \prod_{m=2}^{M-1} p(x_{m+1} \mid x_{m-1}, x_m)$$



[Mur12, fig. 10.3b] 《 다 ) 《 문 ) 《 문 ) 《 문 ) 필일 이 이 이

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 34

#### Naive Bayes Classifier



$$p(y, x_1, \dots, x_M) = p(y)p(x_1 \mid y)p(x_2 \mid y) \cdots p(x_M \mid y)$$
$$= p(y) \prod_{m=1}^M p(x_m \mid y)$$

- Assumption: Given the class label y, all features are conditionally independent
- simple to compute
- maybe flawed by too strong independence assumption



Naive Bayes Classifier

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

ク < (や Germany 24 / 34

#### Outline



- 1. Independence and Conditional Independence
- 2. Separation in Graphs
- 3. Examples of Bayesian Networks

#### 4. Inference

#### 5. Learning

A ロ ト A 団 ト A 団 ト A 団 ト A 団 ト A O A O

## The Probabilistic Inference Problem



Given

- a Bayesian model  $\theta := G = (V, E)$ ,
- ► a **query** consisting of
  - a set X := {x<sub>1</sub>,..., x<sub>M</sub>} ⊆ V of predictor variables (aka observed, visible variables)
  - with a value  $v_m$  for each  $x_m$  (m = 1, ..., M) and
  - a set Y := {y<sub>1</sub>,...,y<sub>J</sub>} ⊆ V of target variables (aka query variables), with X ∩ Y = Ø,

compute

$$p(Y \mid X = v; \theta) := p(y_1, \dots, y_J \mid x_1 = v_1, x_2 = v_2, \dots, x_M = v_M; \theta)$$
  
=  $(p(y_1 = w_1, \dots, y_J = w_J \mid x_1 = v_1, x_2 = v_2, \dots, x_M = v_M; \theta))_{w_1, \dots, w_J}$ 

## Variables that are neither predictor variables nor target variables are called **nuisance variables**.

#### Inference Without Nuisance Variables



Without nuisance variables:  $V = X \dot{\cup} Y$ .

$$p(Y \mid X = v; \theta) \stackrel{\text{def}}{=} \frac{p(X = v, Y; \theta)}{p(X = v; \theta)} = \frac{p(X = v, Y; \theta)}{\sum_{w} p(X = v, Y = w; \theta)}$$

- first, clamp predictors X to their observed values v,
- ▶ then, normalize  $p(X = v, Y; \theta)$  to sum to 1 (over Y).

Note: Summation over w is over all possible values of variables Y.



Artificial data about visitors of an online shop:

|   | referrer      | num.visits | duration | buyer |
|---|---------------|------------|----------|-------|
| 1 | search engine | several    | 15       | yes   |
| 2 | search engine | once       | 10       | yes   |
| 3 | other         | several    | 5        | yes   |
| 4 | ad            | once       | 15       | yes   |
| 5 | ad            | once       | 10       | no    |
| 6 | other         | once       | 10       | no    |
| 7 | other         | once       | 5        | no    |
| 8 | ad            | once       | 5        | no    |



Artificial data about visitors of an online shop:

|   | referrer      | num.visits | duration | buyer |
|---|---------------|------------|----------|-------|
| 1 | search engine | several    | 15       | yes   |
| 2 | search engine | once       | 10       | yes   |
| 3 | other         | several    | 5        | yes   |
| 4 | ad            | once       | 15       | yes   |
| 5 | ad            | once       | 10       | no    |
| 6 | other         | once       | 10       | no    |
| 7 | other         | once       | 5        | no    |
| 8 | ad            | once       | 5        | no    |

p(Y = yes) = 0.5

() 비로 (로) (로) (로) (집) (10)



|   | referrer      | num.visits | duration | buyer |
|---|---------------|------------|----------|-------|
| 1 | search engine | several    | 15       | yes   |
| 2 | search engine | once       | 10       | yes   |
| 3 | other         | several    | 5        | yes   |
| 4 | ad            | once       | 15       | yes   |
| 5 | ad            | once       | 10       | no    |
| 6 | other         | once       | 10       | no    |
| 7 | other         | once       | 5        | no    |
| 8 | ad            | once       | 5        | no    |

$$p(X_{1} = \text{search} | Y = \text{yes}) = 0.5 \qquad p(X_{1} = \text{search} | Y = \text{no}) = 0.0$$

$$p(X_{1} = \text{ad} | Y = \text{yes}) = 0.25 \qquad p(X_{1} = \text{ad} | Y = \text{no}) = 0.5$$

$$p(X_{1} = \text{other} | Y = \text{no}) = 0.5$$

$$p(X_{1} = \text{other} | Y = \text{no}) = 0.5$$



Artificial data about visitors of an online shop:

|   | referrer      | num.visits | duration | buyer |
|---|---------------|------------|----------|-------|
| 1 | search engine | several    | 15       | yes   |
| 2 | search engine | once       | 10       | yes   |
| 3 | other         | several    | 5        | yes   |
| 4 | ad            | once       | 15       | yes   |
| 5 | ad            | once       | 10       | no    |
| 6 | other         | once       | 10       | no    |
| 7 | other         | once       | 5        | no    |
| 8 | ad            | once       | 5        | no    |

$$p(X_2 = \text{several} \mid Y = \text{yes}) = 0.5 \qquad p(X_2 = \text{several} \mid Y = \text{no}) = 0.0$$
$$p(X_2 = \text{once} \mid Y = \text{yes}) = 0.5 \qquad p(X_2 = \text{once} \mid Y = \text{no}) = 1.0$$





$$p(X_3 = 5 \mid Y = yes) = 0.25$$
 $p(X_3 = 5 \mid Y = no) = 0.5$  $p(X_3 = 10 \mid Y = yes) = 0.25$  $p(X_3 = 10 \mid Y = no) = 0.5$  $p(X_3 = 15 \mid Y = yes) = 0.5$  $p(X_3 = 15 \mid Y = no) = 0.0$ 



#### Example / Model Parameters $p(X_1 = \text{search} \mid Y = \text{yes}) = 0.5$ $p(X_1 = ad | Y = yes) = 0.25$ $p(X_1 = \text{other} \mid Y = \text{yes}) = 0.25$ $p(X_2 = \text{several} \mid Y = \text{yes}) = 0.5$ $p(X_2 = \text{once} | Y = \text{ves}) = 0.5$ $p(X_3 = 5 \mid Y = \text{ves}) = 0.25$ $p(X_3 = 10 \mid Y = \text{yes}) = 0.25$ $p(X_3 = 15 \mid Y = \text{ves}) = 0.5$



$$p(Y = yc3) = 0.3$$

$$p(X_1 = \text{search} | Y = \text{no}) = 0.0$$

$$p(X_1 = \text{ad} | Y = \text{no}) = 0.5$$

$$p(X_2 = \text{several} | Y = \text{no}) = 0.0$$

$$p(X_2 = \text{once} | Y = \text{no}) = 1.0$$

$$p(X_3 = 5 | Y = \text{no}) = 0.5$$

$$p(X_3 = 10 | Y = \text{no}) = 0.5$$

$$p(X_3 = 15 | Y = \text{no}) = 0.0$$

p(Y = vec) = 0 F

Will a visitor with  $X_1 = ad$ ,  $X_2 = once$ ,  $X_3 = 10$  buy?

4日 + 4日 + 4日 + 4日 + 4日 - 990

F

Example / Model Parameters  
$$p(X_1 = search | Y = yes) = 0.5$$
 $p(Y = yes) = 0.5$  $p(X_1 = ad | Y = yes) = 0.25$  $p(X_1 = ad | Y = no) = 0.0$  $p(X_1 = ad | Y = yes) = 0.25$  $p(X_1 = ad | Y = no) = 0.5$  $p(X_1 = other | Y = yes) = 0.25$  $p(X_1 = other | Y = no) = 0.5$  $p(X_2 = several | Y = yes) = 0.5$  $p(X_2 = several | Y = no) = 0.5$  $p(X_3 = 5 | Y = yes) = 0.25$  $p(X_2 = once | Y = no) = 0.0$  $p(X_3 = 10 | Y = yes) = 0.25$  $p(X_3 = 10 | Y = no) = 0.5$  $p(X_3 = 15 | Y = yes) = 0.5$  $p(X_3 = 15 | Y = no) = 0.5$ 

Will a visitor with  $X_1 = ad$ ,  $X_2 = once$ ,  $X_3 = 10$  buy?

$$q_{yes} = q(Y = yes | X_1 = ad, X_2 = once, X_3 = 10)$$
  
=  $p(Y = yes) p(X_1 = ad | Y = yes)$   
 $p(X_2 = once | Y = yes) p(X_3 = 10) | Y = yes)$   
=  $0.5 \cdot 0.25 \cdot 0.5 \cdot 0.25 = 0.015625$ 

500

F

Example / Model Parameters  
$$p(X_1 = search | Y = yes) = 0.5$$
 $p(Y = yes) = 0.5$  $p(X_1 = ad | Y = yes) = 0.25$  $p(X_1 = ad | Y = no) = 0.0$  $p(X_1 = ad | Y = yes) = 0.25$  $p(X_1 = ad | Y = no) = 0.5$  $p(X_1 = other | Y = yes) = 0.25$  $p(X_1 = other | Y = no) = 0.5$  $p(X_2 = several | Y = yes) = 0.5$  $p(X_2 = several | Y = no) = 0.5$  $p(X_3 = 5 | Y = yes) = 0.25$  $p(X_2 = once | Y = no) = 0.0$  $p(X_3 = 10 | Y = yes) = 0.25$  $p(X_3 = 10 | Y = no) = 0.5$  $p(X_3 = 15 | Y = yes) = 0.5$  $p(X_3 = 15 | Y = no) = 0.5$ 

Will a visitor with  $X_1 = ad$ ,  $X_2 = once$ ,  $X_3 = 10$  buy?

$$q_{no} = q(Y = no | X_1 = search, X_2 = once, X_3 = 10)$$
  
=  $p(Y = no) p(X_1 = ad | Y = no)$   
 $p(X_2 = once | Y = no) p(X_3 = 10) | Y = no)$   
=  $0.5 \cdot 0.5 \cdot 1.0 \cdot 0.5 = 0.125$ 

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany 28 / 34

三日 のへの

Example / Model Parameters  
$$p(X_1 = \text{search} | Y = \text{yes}) = 0.5$$
 $p(X_1$  $p(X_1 = \text{ad} | Y = \text{yes}) = 0.25$  $p(X_1$  $p(X_1 = \text{other} | Y = \text{yes}) = 0.25$  $p(X_1$  $p(X_2 = \text{several} | Y = \text{yes}) = 0.5$  $p(X_2 = \text{several} | Y = \text{yes}) = 0.5$  $p(X_2 = \text{once} | Y = \text{yes}) = 0.5$  $p(X_2 = \text{point} | Y = \text{yes}) = 0.5$  $p(X_3 = 5 | Y = \text{yes}) = 0.25$  $p(X_3 = 10 | Y = \text{yes}) = 0.25$  $p(X_3 = 15 | Y = \text{yes}) = 0.5$  $p(X_3 = 15 | Y = \text{yes}) = 0.5$ 

$$p(X_{1} = \text{search} | Y = \text{no}) = 0.0$$

$$p(X_{1} = \text{ad} | Y = \text{no}) = 0.5$$

$$p(X_{1} = \text{other} | Y = \text{no}) = 0.5$$

$$p(X_{2} = \text{several} | Y = \text{no}) = 0.0$$

$$p(X_{2} = \text{once} | Y = \text{no}) = 1.0$$

$$p(X_{3} = 5 | Y = \text{no}) = 0.5$$

$$p(X_{3} = 10 | Y = \text{no}) = 0.5$$

$$p(X_{3} = 15 | Y = \text{no}) = 0.0$$

p(Y = ves) = 0.5

Will a visitor with  $X_1 = ad$ ,  $X_2 = once$ ,  $X_3 = 10$  buy?

$$p(Y = \text{yes} \mid X_1 = \text{ad}, X_2 = \text{once}, X_3 = 10) = \frac{q_{\text{yes}}}{q_{\text{yes}} + q_{\text{no}}}$$
$$= \frac{0.015625}{0.015625 + 0.125} = 0.111$$

## Complexity of Inference

- ► for simplicity assume
  - all M predictor variables are nominal with L levels,
  - all K nuisance variables are nominal with L levels,
  - ➤ a single target variable: Y = {y}, J = 1 also nominal with L levels.
- without (Conditional) Independencies:
  - full table *p* requires  $L^{M+K+1} 1$  cells storage.
  - inference requires  $O(L^{K+1})$  operations.
    - for each Y = w sum over all  $L^{K}$  many Z = u.
- ▶ with (Conditional) Independencies / Bayesian network:
  - CPDs p require  $O((M + K + 1)L^{\max \text{ indegree}+1})$  cells storage.
  - inference requires  $O((K+1)L^{\text{treewidth}+1})$  operations.
    - ▶ treewidth=1 for a chain!

Note: See the Bayesian networks lecture for BN inference algorithms.



29 / 34

#### Outline



- 1. Independence and Conditional Independence
- 2. Separation in Graphs
- 3. Examples of Bayesian Networks
- 4. Inference
- 5. Learning

・ロト・A型ト・A型ト・A型ト AUL
・
の々で
・

#### Learning Bayesian Networks



#### ► parameter learning: given

- the structure of the network (graph G) and
- a regularization penalty  $\text{Reg}(\theta)$ ,
- data  $x_1, \ldots, x_N$ ,

learn the CPDs p.

$$\hat{ heta} := rg\max_{ heta} \sum_{n=1}^{N} \log p(x_n; heta) + \mathsf{Reg}( heta)$$

- ► structure learning: given
  - ► data,

learn the structure G and the CPDs p.

#### Bayesian Approach



- ► in the Bayesian approach, parameters are also considered to be random variables, thus,
- learning is just a special type of inference (with the parameters as targets as we have done for Naive Bayes)
- ► information about the distribution of the parameters before seeing the data is required (prior distribution p(θ))
- ► parameter learning: given
  - the structure of the network (graph G) and
  - a prior distribution  $p(\theta)$  of the parameters,
  - data  $x_1, \ldots, x_N$ ,

learn the CPDs p.

$$\hat{\theta} := rg\max_{\theta} \sum_{n=1}^{N} \log p(x_n; \theta) + \log p(\theta)$$

Machine Learning 5. Learning

#### Outlook: Bayesian Networks Lecture

Universiter - Hildeshein

In the lecture on Bayesian Networks we have a closer look at:

- Probability Calculus
- ► Separation in Graphs
- ► Inference Algorithms
- Learning Algorithms

### Summary



- Bayesian Networks define a joint probability distribution by a factorization of conditional probability distributions (CPDs) p(x<sub>n</sub> | pa(x<sub>n</sub>))
  - ▶ Conditions pa(m) form a DAG.
  - ► For nominal variables, all CPDs can be represented as tables (CPTs).
  - Storage complexity is  $O(L^{\max \text{ indegree}+1})$  (instead of  $O(L^M)$ ).
- ► Many model classes essentially are Bayesian networks:
  - ► Naive Bayes classifier, Markov Models, Hidden Markov Models (HMMs)
- Inference in BN means to compute the (marginal joint) distribution of target variables given observed evidence of some predictor variables.
  - ► A Bayesian network can answer queries for arbitrary targets (not just a predefined one as most predictive models).
  - Nuisance variables (for a query) are variables neither observed nor used as targets.
  - ► Inference with nuisance variables can be done efficiently for DAGs with small tree width.

## Summary (2/2)



- Learning BN has to distinguish between
  - ► parameter learning: learn just the CPDs for a given graph, vs.
  - structure learning: learn both, graph and CPDs.
- Parameter learning the maximum aposteriori (MAP) for BN with CPTs and Dirichlet prior can be done simply by counting the frequencies of families in the data.
- Some/most conditional independence assumptions are coded in the graph and can be read off by d-separation.

#### Universiter Hildesheift

#### Further Readings

▶ [Mur12, chapter 10].

() 비로 (로) (로) (로) (집) (10)

#### References



Kevin P. Murphy.

*Machine learning: a probabilistic perspective.* The MIT Press, 2012.