Machine Learning

B. Unsupervised Learning
B. 1 Cluster Analysis

Lars Schmidt-Thieme, Nicolas Schilling

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Outline

1. K-Means \& K-Medoids
2. Mixture Models \& EM Algorithm

Syllabus

Wed. 21.10.	(1)	0. Introduction
		A. Supervised Learning
Wed. 28.10.	(2)	A. 1 Linear Regression
Wed. 04.11.	(3)	A. 2 Linear Classification
Wed. 11.11.	(4)	A. 3 Regularization (Given by Martin)
Wed. 18.11.	(5)	A. 4 High-dimensional Data
Wed. 25.11.	(6)	A. 5 Nearest-Neighbor Models
Wed. 02.12.	(7)	A. 6 Support Vector Machines
Wed. 09.12.	(8)	A. 7 Decision Trees
Wed. 06.01.	(9)	A. 8 A First Look at Bayesian and Markov Networks
Wed. 16.12.	(E)	Extra: Invited Talk: Recommender Systems in work at Volkswagen
		B. Unsupervised Learning
Wed. 20.01.	(10)	B. 1 Clustering
Wed. 27.01.	(11)	B. 2 Dimensionality Reduction
Wed. 03.02.	(12)	B. 3 Frequent Pattern Mining
		C. Reinforcement Learning
Wed. ??.??.	(13)	C. 1 State Space Models
Wed. ??.??.	(14)	C. 2 Markov Decision Processes

Outline

\author{

1. K-Means \& K-Medoids
}

2. Mixture Models \& EM Algorithm

Unsupervised Learning

For supervised learning problems, we were always given some training data

$$
\mathcal{D}^{\text {train }}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}
$$

- $x_{i} \in X$ corresponds to a measurement (a data instance)
- $y_{i} \in Y$ is a label

Then the goal was to find a model $f: X \mapsto Y$ with minimal training error and decent generalization ability.

In unsupervised learning, there are no labels given!!

Cluster Analysis

Assume we have a dataset

$$
\mathcal{D}^{\text {train }}=\left\{x_{1}, \ldots, x_{N}\right\}
$$

with no further information given.

- cluster analysis tries to find commonalities among all data instances to group them into K many groups.
- we have to find a partition of X.

Partitions

Let $X:=\left\{x_{1}, \ldots, x_{N}\right\}$ be a finite set. A set $P:=\left\{X_{1}, \ldots, X_{K}\right\}$ of subsets $X_{k} \subseteq X$ is called a partition of X if the subsets

1. are pairwise disjoint:
2. cover X :

$$
\begin{aligned}
& X_{k} \cap X_{j}=\emptyset, \quad k, j \in\{1, \ldots, K\}, k \neq j \\
& \bigcup_{k=1}^{K} X_{k}=X, \text { and }
\end{aligned}
$$

3. do not contain the empty set: $\quad X_{k} \neq \emptyset, \quad k \in\{1, \ldots, K\}$.

The sets X_{k} are also called clusters, a partition P a clustering. $K \in \mathbb{N}$ is called number of clusters.

Partitions

Let X be a finite set. A surjective function

$$
p:\{1, \ldots,|X|\} \rightarrow\{1, \ldots, K\}
$$

is called a partition function of X.
The sets $X_{k}:=p^{-1}(k)$ form a partition $P:=\left\{X_{1}, \ldots, X_{K}\right\}$.

x_{i}	$p\left(x_{i}\right)$
x_{1}	1
x_{2}	2
x_{3}	2
x_{4}	1

$$
p^{-1}(1)=\left\{x_{1}, x_{4}\right\} \quad p^{-1}(2)=\left\{x_{2}, x_{3}\right\}
$$

Partitions

Let $X:=\left\{x_{1}, \ldots, x_{N}\right\}$ be a finite set. A binary $N \times K$ matrix

$$
P \in\{0,1\}^{N \times K}
$$

is called a partition matrix of X if it

1. is row-stochastic:

$$
\sum_{k=1}^{K} P_{i, k}=1, \quad i \in\{1, \ldots, N\}
$$

2. does not contain a zero column: $\quad X_{i, k} \neq(0, \ldots, 0)^{T}, \quad k \in\{1, \ldots, K\}$

The sets $X_{k}:=\left\{x_{i} \mid P_{i, k}=1\right\}$ form a partition $P:=\left\{X_{1}, \ldots, X_{K}\right\}$.
$P_{., k}$ is called membership vector of class k.

Partitions

For the example given through:

x_{i}	$p\left(x_{i}\right)$
x_{1}	1
x_{2}	2
x_{3}	2
x_{4}	1

the partition matrix would look like:

$$
P=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

The Cluster Analysis Problem

Given

- a set \mathcal{X} called data space, e.g., $\mathcal{X}:=\mathbb{R}^{m}$,
- a set $X \subseteq \mathcal{X}$ called data, and
- a function

$$
D: \bigcup_{X \subseteq \mathcal{X}} \operatorname{Part}(X) \rightarrow \mathbb{R}_{0}^{+}
$$

called distortion measure where $D(P)$ measures how bad a partition $P \in \operatorname{Part}(X)$ for a data set $X \subseteq \mathcal{X}$ is,
find a partition $P=\left\{X_{1}, X_{2}, \ldots X_{K}\right\} \in \operatorname{Part}(X)$ with minimal distortion $D(P)$.

The Cluster Analysis Problem (given K)

Given

- a set \mathcal{X} called data space, e.g., $\mathcal{X}:=\mathbb{R}^{m}$,
- a set $X \subseteq \mathcal{X}$ called data,
- a function

$$
D: \bigcup_{X \subseteq \mathcal{X}} \operatorname{Part}(X) \rightarrow \mathbb{R}_{0}^{+}
$$

called distortion measure where $D(P)$ measures how bad a partition $P \in \operatorname{Part}(X)$ for a data set $X \subseteq \mathcal{X}$ is, and

- a number $K \in \mathbb{N}$ of clusters,
find a partition $P=\left\{X_{1}, X_{2}, \ldots X_{K}\right\} \in \operatorname{Part}_{K}(X)$ with K clusters with minimal distortion $D(P)$.

Distortion Measures: Intuition

Assume we have the following data and two cluster centers μ_{1} and μ_{2} :

- we would assign the left points to the red cluster, the right points to the blue cluster
- we want a distortion measure that encourages this behaviour

k-means: Distortion Sum of Distances to Cluster Centers

Find a partition P such that the sum of squared distances to cluster centers in minimal:

$$
D(P):=\sum_{k=1}^{k} \sum_{\substack{i=1 \\ P_{i, k}=1}}^{n}\left\|x_{i}-\mu_{k}\right\|^{2}
$$

with

$$
\mu_{k}:=\operatorname{mean}\left\{x_{i} \mid P_{i, k}=1, i=1, \ldots, n\right\}
$$

k-means: Distortion Sum of Distances to Cluster Centers

Find a partition P such that the sum of squared distances to cluster centers in minimal:

$$
D(P):=\sum_{i=1}^{n} \sum_{k=1}^{K} P_{i, k}\left\|x_{i}-\mu_{k}\right\|^{2}=\sum_{k=1}^{K} \sum_{\substack{i=1: \\ P_{i . k}=1}}^{n}\left\|x_{i}-\mu_{k}\right\|^{2}
$$

with

$$
\mu_{k}:=\frac{\sum_{i=1}^{n} P_{i, k} x_{i}}{\sum_{i=1}^{n} P_{i, k}}=\operatorname{mean}\left\{x_{i} \mid P_{i, k}=1, i=1, \ldots, n\right\}
$$

On the role of K

Minimizing D over partitions with varying number of clusters (varying K) does not make sense

- a singleton clustering, where each point is its own cluster center and $K=N$ has minimal D
- only minimizing with a given K makes sense

Minimizing D is not easy as reassigning a point to a different cluster also shifts the cluster centers.

k-means: Minimizing Distances to Cluster Centers

Add cluster centers μ as auxiliary optimization variables:

$$
D(P, \mu):=\sum_{i=1}^{n} \sum_{k=1}^{K} P_{i, k}\left\|x_{i}-\mu_{k}\right\|^{2}
$$

k-means: Minimizing Distances to Cluster Centers

Add cluster centers μ as auxiliary optimization variables:

$$
D(P, \mu):=\sum_{i=1}^{n} \sum_{k=1}^{K} P_{i, k}\left\|x_{i}-\mu_{k}\right\|^{2}
$$

Block coordinate descent:

1. fix μ, optimize $P \rightsquigarrow$ reassign data points to clusters:

$$
P_{i, k}:=\delta\left(k=\ell_{i}\right), \quad \ell_{i}:=\underset{k \in\{1, \ldots, K\}}{\arg \min }\left\|x_{i}-\mu_{k}\right\|^{2}
$$

k-means: Minimizing Distances to Cluster Centers

Add cluster centers μ as auxiliary optimization variables:

$$
D(P, \mu):=\sum_{i=1}^{n} \sum_{k=1}^{K} P_{i, k}\left\|x_{i}-\mu_{k}\right\|^{2}
$$

Block coordinate descent:

1. fix μ, optimize $P \rightsquigarrow$ reassign data points to clusters:

$$
P_{i, k}:=\delta\left(k=\ell_{i}\right), \quad \ell_{i}:=\underset{k \in\{1, \ldots, K\}}{\arg \min }\left\|x_{i}-\mu_{k}\right\|^{2}
$$

2. fix P, optimize $\mu \rightsquigarrow$ recompute cluster centers:

$$
\mu_{k}:=\frac{\sum_{i=1}^{n} P_{i, k} x_{i}}{\sum_{i=1}^{n} P_{i, k}}
$$

Iterate until partition is stable.

k-means: Initialization

k-means is usually initialized by picking K data points as cluster centers at random:

1. pick the first cluster center μ_{1} out of the data points at random and then
2. sequentially select the data point with the largest sum of distances to already chosen cluster centers as next cluster center

$$
\mu_{k}:=x_{i}, \quad i:=\underset{i \in\{1, \ldots, n\}}{\arg \max } \sum_{\ell=1}^{k-1}\left\|x_{i}-\mu_{\ell}\right\|^{2}, \quad k=2, \ldots, k
$$

k-means: Initialization

k-means is usually initialized by picking K data points as cluster centers at random:

1. pick the first cluster center μ_{1} out of the data points at random and then
2. sequentially select the data point with the largest sum of distances to already chosen cluster centers as next cluster center

$$
\mu_{k}:=x_{i}, \quad i:=\underset{i \in\{1, \ldots, n\}}{\arg \max } \sum_{\ell=1}^{k-1}\left\|x_{i}-\mu_{\ell}\right\|^{2}, \quad k=2, \ldots, k
$$

Different initializations may lead to different local minima.

- run k-means with different random initializations and
- keep only the one with the smallest distortion (random restarts).

k-means Algorithm

```
1: procedure Cluster-KMEANS \(\left(\mathcal{D}:=\left\{x_{1}, \ldots, x_{N}\right\} \subseteq \mathbb{R}^{M}, K \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right)\)
2: \(\quad i_{1} \sim \operatorname{unif}(\{1, \ldots, N\}), \mu_{1}:=x_{i_{1}}\)
3: for \(k:=2, \ldots, K\) do
4: \(\quad i_{k}:=\arg \max _{n \in\{1, \ldots, N\}} \sum_{\ell=1}^{k-1}\left\|x_{n}-\mu_{\ell}\right\|, \mu_{i}:=x_{i_{k}}\).
5: repeat
6: \(\quad \mu^{\text {old }}:=\mu\)
7: \(\quad\) for \(n:=1, \ldots, N\) do
8:
9:
10:
11: until \(\frac{1}{K} \sum_{k=1}^{K}\left\|\mu_{k}-\mu_{k}^{\text {old }}\right\|<\epsilon\)
12: return \(P\)
```

Note: In implementations, the two loops over the data (lines 6 and 9) can be combined in one loop.

Example

Example

Example

Example

Example

Example

Example

(x)

Example

Example

K-medoids: K-means for General Distances

 One can generalize k-means to general distances d :$$
D(P, \mu):=\sum_{i=1}^{n} \sum_{k=1}^{K} P_{i, k} d\left(x_{i}, \mu_{k}\right)
$$

K-medoids: K-means for General Distances

One can generalize k-means to general distances d :

$$
D(P, \mu):=\sum_{i=1}^{n} \sum_{k=1}^{K} P_{i, k} d\left(x_{i}, \mu_{k}\right)
$$

- step 1 assigning data points to clusters remains the same

$$
P_{i, k}:=\underset{k \in\{1, \ldots, K\}}{\arg \min } d\left(x_{i}, \mu_{k}\right)
$$

- but step 2 finding the best cluster representatives μ_{k} is not solved by the mean and may be difficult in general.

K-medoids: K-means for General Distances

One can generalize k-means to general distances d :

$$
D(P, \mu):=\sum_{i=1}^{n} \sum_{k=1}^{K} P_{i, k} d\left(x_{i}, \mu_{k}\right)
$$

- step 1 assigning data points to clusters remains the same

$$
P_{i, k}:=\underset{k \in\{1, \ldots, K\}}{\arg \min } d\left(x_{i}, \mu_{k}\right)
$$

- but step 2 finding the best cluster representatives μ_{k} is not solved by the mean and may be difficult in general.
idea \mathbf{k}-medoids: choose cluster representatives out of cluster data points:

$$
\mu_{k}:=x_{j}, \quad j:=\underset{j \in\{1, \ldots, n\}: P_{j, k}=1}{\arg \min } \sum_{i=1}^{n} P_{i, k} d\left(x_{i}, x_{j}\right)
$$

Outline

1. K-Means \& K-Medoids

2. Mixture Models \& EM Algorithm

Soft Partitions: Row Stochastic Matrices

Let $X:=\left\{x_{1}, \ldots, x_{N}\right\}$ be a finite set. A $N \times K$ matrix

$$
P \in[0,1]^{N \times K}
$$

is called a soft partition matrix of X if it

1. is row-stochastic:

$$
\sum_{k=1}^{K} P_{i, k}=1, \quad i \in\{1, \ldots, N\}, k \in\{1, \ldots, K\}
$$

2. does not contain a zero column: $\quad X_{i, k} \neq(0, \ldots, 0)^{T}, \quad k \in\{1, \ldots, K\}$.
$P_{i, k}$ is called the membership degree of instance i in class k or the cluster weight of instance i in cluster k.
$P_{., k}$ is called membership vector of class k.
SoftPart (X) denotes the set of all soft partitions of X.
Note: Soft partitions are also called soft clusterings and fuzzy clusterings.

The Soft Clustering Problem

Given

- a set \mathcal{X} called data space, e.g., $\mathcal{X}:=\mathbb{R}^{m}$,
- a set $X \subseteq \mathcal{X}$ called data, and
- a function

$$
D: \bigcup_{X \subseteq \mathcal{X}} \operatorname{SoftPart}(X) \rightarrow \mathbb{R}_{0}^{+}
$$

called distortion measure where $D(P)$ measures how bad a soft partition $P \in \operatorname{SoftPart}(X)$ for a data set $X \subseteq \mathcal{X}$ is,
find a soft partition $P \in \operatorname{SoftPart}(X)$ with minimal distortion $D(P)$.

The Soft Clustering Problem (with given K)

Given

- a set \mathcal{X} called data space, e.g., $\mathcal{X}:=\mathbb{R}^{m}$,
- a set $X \subseteq \mathcal{X}$ called data,
- a function

$$
D: \bigcup_{X \subseteq \mathcal{X}} \operatorname{SoftPart}(X) \rightarrow \mathbb{R}_{0}^{+}
$$

called distortion measure where $D(P)$ measures how bad a soft partition $P \in \operatorname{SoftPart}(X)$ for a data set $X \subseteq \mathcal{X}$ is, and

- a number $K \in \mathbb{N}$ of clusters,
find a soft partition $P \in \operatorname{SoftPart}_{K}(X) \subseteq[0,1]^{|X| \times K}$ with K clusters with minimal distortion $D(P)$.

Mixture Models

For our data, no clusters are given, but this does not mean that they do not exist, there is just no way for us to measure them.

Mixture models assume that there exists an unobserved nominal variable Z with K levels, which is distributed according to:

$$
Z \sim \operatorname{Cat}(\pi)
$$

or

$$
p(Z=k)=\pi_{k}
$$

for some probabilities π_{k} with

$$
\sum_{k=1}^{K} \pi_{k}=1
$$

Mixture Models

Mixture models then model the joint probability of X and Z :

$$
\begin{aligned}
p(X, Z)=p(Z) p(X \mid Z) & =\prod_{k=1}^{K} \pi_{k}^{\delta(Z=k)} \prod_{k=1}^{K} p(X \mid Z=k)^{\delta(Z=k)} \\
& =\prod_{k=1}^{K}\left(\pi_{k} p(X \mid Z=k)\right)^{\delta(Z=k)}
\end{aligned}
$$

And the marginal probability of a given X is:

$$
p(X)=\sum_{k=1}^{K} p(Z=k) p(X \mid Z=k)=\sum_{k=1}^{K} \pi_{k} p(X \mid Z=k)
$$

All we need to specify is $p(X \mid Z)$!

Gaussian Mixture Models

Gaussian mixture models are mixture models where the probability of seeing an instance, given its cluster membership is a Gaussian:

$$
p\left(x_{i} \mid z_{i}=k\right)=\mathcal{N}\left(x_{i} ; \mu_{k}, \Sigma_{k}\right)
$$

Or equivalently:

$$
p(X=x \mid Z=k)=\frac{1}{\sqrt{(2 \pi)^{m}\left|\Sigma_{k}\right|}} e^{-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)}
$$

for a mean μ_{k} and Covariance Matrix Σ_{k}

Mixture Models: Intuition

Clearly, we see that the hidden variable Z has two outcomes!

Mixture Models: Intuition

Data may come from a mixture of two Gaussians!

Mixture Models: Intuition

Heightlines of a mixture of two Gaussians!

Maximum Likelihood Estimate?

The complete data loglikelihood of the completed data (X, Z) then is

$$
\begin{aligned}
\ell(\Theta ; X, Z) & :=\sum_{i=1}^{n} \sum_{k=1}^{K} \delta\left(Z_{i}=k\right)\left(\ln \pi_{k}+\ln p\left(X=x_{i} \mid Z=k ; \theta_{k}\right)\right. \\
\text { with } \Theta & :=\left(\pi_{1}, \ldots, \pi_{K}, \theta_{1}, \ldots, \theta_{K}\right) \quad \theta_{k}=\left(\mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

ℓ cannot be computed because z_{i} 's are unobserved.
We cannot learn this model by computing a maximum likelihood estimate!

Expected Complete Likelihood \& EM Algorithm

We calculate the expected value of the loglikelihood with respect to the conditional distribution of Z given X under the currently estimated θ^{t-1} :

$$
Q\left(\Theta \mid \Theta^{t-1}\right)=\mathrm{E}_{Z \mid X, \Theta^{t-1}}[\ell(\Theta ; X, Z)]
$$

- From old Θ^{t-1}, we know the distribution of the Z, then compute the expectation value of ℓ with respect to Z (Expectation Step)
- We derive a quantity Q, that we can then maximize by optimizing Θ (Maximization Step)
- From the new Θ, we can then update Z and repeat the process

Expected Complete Likelihood

$$
\begin{aligned}
Q\left(\Theta \mid \Theta^{t-1}\right) & =\mathrm{E}\left[\sum_{i=1}^{N} \log p\left(x_{i}, z_{i} \mid \Theta\right)\right] \\
& =\sum_{i=1}^{N} \mathrm{E}\left[\log \left[\prod_{k=1}^{K} \pi_{k} p\left(x_{i} \mid \theta_{k}\right)\right)^{\left.\left.\delta\left(z_{i}=k\right)\right]\right]}\right. \\
& =\sum_{i=1}^{N} \sum_{k=1}^{K} \mathrm{E}\left[\delta\left(z_{i}=k\right)\right] \log \left[\pi_{k} p\left(x_{i} \mid \theta_{k}\right]\right. \\
& =\sum_{i=1}^{N} \sum_{k=1}^{K} p\left(z_{i}=k \mid x_{i}, \Theta^{t-1}\right) \log \left[\pi_{k} p\left(x_{i} \mid \theta_{k}\right]\right. \\
& =\sum_{i=1}^{N} \sum_{k=1}^{K} r_{i k} \log \pi_{k}+\sum_{i=1}^{N} \sum_{k=1}^{K} r_{i k} \log p\left(x_{i} \mid \theta_{k}\right)
\end{aligned}
$$

Expected Complete Likelihood (Expectation Step)

$$
\begin{aligned}
Q\left(\Theta \mid \Theta^{t-1}\right) & =\mathrm{E}\left[\sum_{i=1}^{N} \log p\left(x_{i}, z_{i} \mid \Theta\right)\right] \\
& =\ldots \\
& =\sum_{i=1}^{N} \sum_{k=1}^{K} r_{i k} \log \pi_{k}+\sum_{i=1}^{N} \sum_{k=1}^{K} r_{i k} \log p\left(x_{i} \mid \theta_{k}\right)
\end{aligned}
$$

with

$$
r_{i k}=p\left(Z=k \mid x_{i}, \Theta\right)=\frac{\pi_{k} p\left(x_{i} \mid \theta_{k}\right)}{\sum_{k^{\prime}} \pi_{k^{\prime}} p\left(x_{i} \mid \theta_{k^{\prime}}\right)}
$$

which is called the responsibilities of a cluster k to an instance i

- Computing the $r_{i k}$ yields the probabilites for Z (Expectation Step)

Maximization Step (I)

$Q\left(\Theta \mid \Theta^{t-1}\right)$ needs to be maximized for all π_{k} and for the parameters of the individual Gaussians $\theta_{k}=\left(\mu_{k}, \Sigma_{k}\right)$.

For π, Q is maximized by setting

$$
\pi_{k}=\frac{1}{N} \sum_{i} r_{i k} \quad \forall k
$$

For μ_{k} and Σ_{k}, we only have to look at the second part of Q

$$
\begin{aligned}
\ell\left(\mu_{k}, \Sigma_{k}\right) & =\sum_{i=1}^{N} \sum_{k=1}^{K} r_{i k} \log p\left(x_{i} \mid \Theta_{k}\right) \\
& =-\frac{1}{2} \sum_{i} r_{i k}\left[\log \left|\Sigma_{k}\right|+\left(x_{i}-\mu_{k}\right)^{\top} \Sigma_{k}\left(x_{i}-\mu_{k}\right)\right]
\end{aligned}
$$

Maximization Step (II)

$\ell\left(\mu_{k}, \Sigma_{k}\right)$ is maximized for:

$$
\mu_{k}=\frac{\sum_{i=1}^{n} r_{i, k} x_{i}}{\sum_{i=1}^{k} r_{i, k}}
$$

And

$$
\begin{aligned}
\Sigma_{k} & =\frac{\sum_{i=1}^{n} r_{i, k}\left(x_{i}-\mu_{k}\right)^{\top}\left(x_{i}-\mu_{k}\right)}{\sum_{i=1}^{n} r_{i, k}} \\
& =\frac{\sum_{i=1}^{n} r_{i, k} x_{i}^{\top} x_{i}-\mu_{k}^{\top} \mu_{k}}{\sum_{i=1}^{n} r_{i, k}}
\end{aligned}
$$

Gaussian Mixtures for Soft Clustering

- The responsibilities $r \in[0,1]^{N \times K}$ are a soft partition.

$$
P:=r
$$

- The negative expected loglikelihood can be used as cluster distortion:

$$
D(P):=-\max _{\Theta} Q(\Theta, r)
$$

- To optimize D, we simply can run EM.

Gaussian Mixtures for Soft Clustering

- The responsibilities $r \in[0,1]^{N \times K}$ are a soft partition.

$$
P:=r
$$

- The negative expected loglikelihood can be used as cluster distortion:

$$
D(P):=-\max _{\Theta} Q(\Theta, r)
$$

- To optimize D, we simply can run EM.

For hard clustering:

- assign points to the cluster with highest responsibility (hard EM):

$$
\begin{equation*}
r_{i, k}^{(t-1)}=\delta\left(k=\underset{k^{\prime}=1, \ldots, k}{\arg \max } \tilde{r}_{i, k^{\prime}}^{(t-1)}\right) \tag{}
\end{equation*}
$$

Gaussian Mixtures for Soft Clustering / Example

Gaussian Mixtures for Soft Clustering / Example

Gaussian Mixtures for Soft Clustering / Example

Model-based Cluster Analysis

Different parametrizations of the covariance matrices Σ_{k} restrict possible cluster shapes:

- full Σ :
all sorts of ellipsoid clusters.
- diagonal Σ :
ellipsoid clusters with axis-parallel axes
- unit Σ :
spherical clusters.

One also distinguishes

- cluster-specific Σ_{k} : each cluster can have its own shape.
- shared $\Sigma_{k}=\Sigma$:
all clusters have the same shape.

