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Machine Learning

Syllabus

Wed. 21.10. (1) 0. Introduction

A. Supervised Learning
Wed. 28.10. (2) A.1 Linear Regression
Wed. 04.11. (3) A.2 Linear Classification
Wed. 11.11. (4) A.3 Regularization (Given by Martin)
Wed. 18.11. (5) A.4 High-dimensional Data
Wed. 25.11. (6) A.5 Nearest-Neighbor Models
Wed. 02.12. (7) A.6 Support Vector Machines
Wed. 09.12. (8) A.7 Decision Trees
Wed. 06.01. (9) A.8 A First Look at Bayesian and Markov Networks

Extra:
Wed. 16.12. (E) Invited Talk: Recommender Systems in work at Volkswagen

B. Unsupervised Learning
Wed. 20.01. (10) B.1 Clustering
Wed. 27.01. (11) B.2 Dimensionality Reduction
Wed. 03.02. (12) B.3 Frequent Pattern Mining

C. Reinforcement Learning
Wed. ??.??. (13) C.1 State Space Models
Wed. ??.??. (14) C.2 Markov Decision Processes
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Machine Learning 1. K-Means & K-Medoids

Unsupervised Learning

For supervised learning problems, we were always given some training
data

Dtrain = {(x1, y1), ..., (xN , yN)}

I xi ∈ X corresponds to a measurement (a data instance)

I yi ∈ Y is a label

Then the goal was to find a model f : X 7→ Y with minimal training error
and decent generalization ability.

In unsupervised learning, there are no labels given!!
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Machine Learning 1. K-Means & K-Medoids

Cluster Analysis
Assume we have a dataset

Dtrain = {x1, ..., xN}
with no further information given.

I cluster analysis tries to find commonalities among all data instances
to group them into K many groups.

I we have to find a partition of X .
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Machine Learning 1. K-Means & K-Medoids

Partitions

Let X := {x1, . . . , xN} be a finite set. A set P := {X1, . . . ,XK} of subsets
Xk ⊆ X is called a partition of X if the subsets

1. are pairwise disjoint: Xk ∩ Xj = ∅, k , j ∈ {1, . . . ,K}, k 6= j

2. cover X :
K⋃

k=1

Xk = X , and

3. do not contain the empty set: Xk 6= ∅, k ∈ {1, . . . ,K}.

The sets Xk are also called clusters, a partition P a clustering.
K ∈ N is called number of clusters.
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Machine Learning 1. K-Means & K-Medoids

Partitions
Let X be a finite set. A surjective function

p : {1, . . . , |X |} → {1, . . . ,K}

is called a partition function of X .

The sets Xk := p−1(k) form a partition P := {X1, . . . ,XK}.

xi p(xi )

x1 1
x2 2
x3 2
x4 1

p−1(1) = {x1, x4} p−1(2) = {x2, x3}
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Machine Learning 1. K-Means & K-Medoids

Partitions

Let X := {x1, . . . , xN} be a finite set. A binary N × K matrix

P ∈ {0, 1}N×K

is called a partition matrix of X if it

1. is row-stochastic:
K∑

k=1

Pi ,k = 1, i ∈ {1, . . . ,N}

2. does not contain a zero column: Xi ,k 6= (0, . . . , 0)T , k ∈ {1, . . . ,K}

The sets Xk := {xi | Pi ,k = 1} form a partition P := {X1, . . . ,XK}.

P.,k is called membership vector of class k .
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Machine Learning 1. K-Means & K-Medoids

Partitions

For the example given through:

xi p(xi )

x1 1
x2 2
x3 2
x4 1

the partition matrix would look like:

P =


1 0
0 1
0 1
1 0
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Machine Learning 1. K-Means & K-Medoids

The Cluster Analysis Problem

Given

I a set X called data space, e.g., X := Rm,

I a set X ⊆ X called data, and

I a function

D :
⋃

X⊆X
Part(X )→ R+

0

called distortion measure where D(P) measures how bad a partition
P ∈ Part(X ) for a data set X ⊆ X is,

I a number K ∈ N of clusters,

find a partition P = {X1,X2, . . .XK} ∈ Part (X ) with minimal distortion
D(P).
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Machine Learning 1. K-Means & K-Medoids

The Cluster Analysis Problem (given K)

Given

I a set X called data space, e.g., X := Rm,

I a set X ⊆ X called data,

I a function

D :
⋃

X⊆X
Part(X )→ R+

0

called distortion measure where D(P) measures how bad a partition
P ∈ Part(X ) for a data set X ⊆ X is, and

I a number K ∈ N of clusters,

find a partition P = {X1,X2, . . .XK} ∈ Part K (X ) with K clusters with
minimal distortion D(P).
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Machine Learning 1. K-Means & K-Medoids

Distortion Measures: Intuition

Assume we have the following data and two cluster centers µ1 and µ2:

I we would assign the left points to the red cluster, the right points to
the blue cluster

I we want a distortion measure that encourages this behaviour
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Machine Learning 1. K-Means & K-Medoids

k-means: Distortion Sum of Distances to Cluster Centers

Find a partition P such that the sum of squared distances to cluster
centers in minimal:

D(P) :=
K∑

k=1

n∑
i=1:

Pi.k=1

||xi − µk ||2

with

µk := mean {xi | Pi ,k = 1, i = 1, . . . , n}
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Machine Learning 1. K-Means & K-Medoids
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Machine Learning 1. K-Means & K-Medoids

On the role of K

Minimizing D over partitions with varying number of clusters (varying K )
does not make sense

I a singleton clustering, where each point is its own cluster center and
K = N has minimal D

I only minimizing with a given K makes sense

Minimizing D is not easy as reassigning a point to a different cluster also
shifts the cluster centers.
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Machine Learning 1. K-Means & K-Medoids

k-means: Minimizing Distances to Cluster Centers
Add cluster centers µ as auxiliary optimization variables:

D(P, µ) :=
n∑

i=1

K∑
k=1

Pi ,k ||xi − µk ||2

Block coordinate descent:

1. fix µ, optimize P  reassign data points to clusters:

Pi ,k := δ(k = `i ), `i := arg min
k∈{1,...,K}

||xi − µk ||2

2. fix P, optimize µ  recompute cluster centers:

µk :=

∑n
i=1 Pi ,kxi∑n
i=1 Pi ,k

Iterate until partition is stable.
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Machine Learning 1. K-Means & K-Medoids

k-means: Initialization

k-means is usually initialized by picking K data points as cluster centers at
random:

1. pick the first cluster center µ1 out of the data points at random and
then

2. sequentially select the data point with the largest sum of distances to
already chosen cluster centers as next cluster center

µk := xi , i := arg max
i∈{1,...,n}

k−1∑
`=1

||xi − µ`||2, k = 2, . . . ,K

Different initializations may lead to different local minima.

I run k-means with different random initializations and

I keep only the one with the smallest distortion (random restarts).
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Machine Learning 1. K-Means & K-Medoids

k-means Algorithm

1: procedure cluster-kmeans(D := {x1, . . . , xN} ⊆ RM ,K ∈ N, ε ∈ R+)
2: i1 ∼ unif({1, . . . ,N}), µ1 := xi1
3: for k := 2, . . . ,K do
4: ik := argmaxn∈{1,...,N}

∑k−1
`=1 ||xn − µ`||, µi := xik ,.

5: repeat
6: µold := µ
7: for n := 1, . . . ,N do
8: Pn := argmink∈{1,...,K} ||xn − µk ||
9: for k := 1, . . . ,K do
10: µk := mean {xn | Pn = k}
11: until 1

K

∑K
k=1 ||µk − µold

k || < ε
12: return P
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Note: In implementations, the two loops over the data (lines 6 and 9) can be combined in
one loop.



Machine Learning 1. K-Means & K-Medoids

Example

1 2 3 4 5 6 7 8 9 10 11 12

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 = µ1 x5 x6

x1 = µ2 x2 x3 x4 = µ1 x5 x6

x1 µ2 x2 x3 x4 µ1 x5 x6

x1 µ2 x2 x3 x4 µ1 x5 x6

x1 x2 = µ2 x3 x4 x5 = µ1 x6

x1 x2 = µ2 x3 x4 x5 = µ1 x6

d = 33

d = 23.7

d = 16
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Machine Learning 1. K-Means & K-Medoids

K-medoids: K-means for General Distances
One can generalize k-means to general distances d :

D(P, µ) :=
n∑

i=1

K∑
k=1

Pi ,kd(xi , µk)

I step 1 assigning data points to clusters remains the same

Pi ,k := arg min
k∈{1,...,K}

d(xi , µk)

I but step 2 finding the best cluster representatives µk is not solved
by the mean and may be difficult in general.

idea k-medoids: choose cluster representatives out of cluster data points:

µk := xj , j := arg min
j∈{1,...,n}:Pj,k=1

n∑
i=1

Pi ,kd(xi , xj)
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Machine Learning 2. Mixture Models & EM Algorithm

Soft Partitions: Row Stochastic Matrices

Let X := {x1, . . . , xN} be a finite set. A N × K matrix

P ∈ [0, 1]N×K

is called a soft partition matrix of X if it

1. is row-stochastic:
K∑

k=1

Pi,k = 1, i ∈ {1, . . . ,N}, k ∈ {1, . . . ,K}

2. does not contain a zero column: Xi,k 6= (0, . . . , 0)T , k ∈ {1, . . . ,K}.

Pi,k is called the membership degree of instance i in class k or the cluster
weight of instance i in cluster k .

P.,k is called membership vector of class k .

SoftPart(X ) denotes the set of all soft partitions of X .
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Note: Soft partitions are also called soft clusterings and fuzzy clusterings.



Machine Learning 2. Mixture Models & EM Algorithm

The Soft Clustering Problem

Given

I a set X called data space, e.g., X := Rm,

I a set X ⊆ X called data, and

I a function

D :
⋃

X⊆X
SoftPart(X )→ R+

0

called distortion measure where D(P) measures how bad a soft
partition P ∈ SoftPart(X ) for a data set X ⊆ X is,

I a number K ∈ N of clusters,

find a soft partition P ∈ SoftPart (X ) with minimal distortion D(P).
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Machine Learning 2. Mixture Models & EM Algorithm

The Soft Clustering Problem (with given K )

Given

I a set X called data space, e.g., X := Rm,

I a set X ⊆ X called data,

I a function

D :
⋃

X⊆X
SoftPart(X )→ R+

0

called distortion measure where D(P) measures how bad a soft
partition P ∈ SoftPart(X ) for a data set X ⊆ X is, and

I a number K ∈ N of clusters,

find a soft partition P ∈ SoftPart K (X )⊆ [0, 1]|X |×K with K clusters with
minimal distortion D(P).
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Machine Learning 2. Mixture Models & EM Algorithm

Mixture Models

For our data, no clusters are given, but this does not mean that they do
not exist, there is just no way for us to measure them.

Mixture models assume that there exists an unobserved nominal
variable Z with K levels, which is distributed according to:

Z ∼ Cat(π)

or
p(Z = k) = πk

for some probabilities πk with

K∑
k=1

πk = 1
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Machine Learning 2. Mixture Models & EM Algorithm

Mixture Models

Mixture models then model the joint probability of X and Z :

p(X ,Z ) = p(Z )p(X | Z ) =
K∏

k=1

π
δ(Z=k)
k

K∏
k=1

p(X | Z = k)δ(Z=k)

=
K∏

k=1

(πkp(X | Z = k))δ(Z=k)

And the marginal probability of a given X is:

p(X ) =
K∑

k=1

p(Z = k)p(X | Z = k) =
K∑

k=1

πkp(X | Z = k)

All we need to specify is p(X |Z )!
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Machine Learning 2. Mixture Models & EM Algorithm

Gaussian Mixture Models

Gaussian mixture models are mixture models where the probability of
seeing an instance, given its cluster membership is a Gaussian:

p(xi |zi = k) = N (xi ;µk ,Σk)

Or equivalently:

p(X = x | Z = k) =
1√

(2π)m|Σk |
e−

1
2

(x−µk )T Σ−1
k (x−µk )

for a mean µk and Covariance Matrix Σk
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Machine Learning 2. Mixture Models & EM Algorithm

Mixture Models: Intuition

Clearly, we see that the hidden variable Z has two outcomes!
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Machine Learning 2. Mixture Models & EM Algorithm

Mixture Models: Intuition

Data may come from a mixture of two Gaussians!

Lars Schmidt-Thieme, Nicolas Schilling, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 1



Machine Learning 2. Mixture Models & EM Algorithm

Mixture Models: Intuition

Heightlines of a mixture of two Gaussians!
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Machine Learning 2. Mixture Models & EM Algorithm

Maximum Likelihood Estimate?

The complete data loglikelihood of the completed data (X ,Z ) then is

`(Θ;X ,Z ) :=
n∑

i=1

K∑
k=1

δ(Zi = k)(lnπk + ln p(X = xi | Z = k ; θk)

with Θ := (π1, . . . , πK , θ1, . . . , θK ) θk = (µk ,Σk)

` cannot be computed because zi ’s are unobserved.

We cannot learn this model by computing a maximum likelihood estimate!
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Machine Learning 2. Mixture Models & EM Algorithm

Expected Complete Likelihood & EM Algorithm

We calculate the expected value of the loglikelihood with respect to the
conditional distribution of Z given X under the currently estimated θt−1:

Q(Θ|Θt−1) = EZ |X ,Θt−1 [`(Θ;X ,Z )]

I From old Θt−1, we know the distribution of the Z , then compute the
expectation value of ` with respect to Z (Expectation Step)

I We derive a quantity Q, that we can then maximize by optimizing Θ
(Maximization Step)

I From the new Θ, we can then update Z and repeat the process
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Machine Learning 2. Mixture Models & EM Algorithm

Expected Complete Likelihood

Q(Θ|Θt−1) = E

[
N∑
i=1

log p(xi , zi |Θ)

]

=
N∑
i=1

E

[
log

[
K∏

k=1

πkp(xi |θk))δ(zi=k)

]]

=
N∑
i=1

K∑
k=1

E[δ(zi = k)] log[πkp(xi |θk ]

=
N∑
i=1

K∑
k=1

p(zi = k|xi ,Θt−1) log[πkp(xi |θk ]

=
N∑
i=1

K∑
k=1

rik log πk +
N∑
i=1

K∑
k=1

rik log p(xi |θk)
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Machine Learning 2. Mixture Models & EM Algorithm

Expected Complete Likelihood (Expectation Step)

Q(Θ|Θt−1) = E

[
N∑
i=1

log p(xi , zi |Θ)

]
= . . .

=
N∑
i=1

K∑
k=1

rik log πk +
N∑
i=1

K∑
k=1

rik log p(xi |θk)

with

rik = p(Z = k |xi ,Θ) =
πkp(xi |θk)∑
k ′ πk ′p(xi |θk ′)

which is called the responsibilities of a cluster k to an instance i

I Computing the rik yields the probabilites for Z (Expectation Step)
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Machine Learning 2. Mixture Models & EM Algorithm

Maximization Step (I)
Q(Θ|Θt−1) needs to be maximized for all πk and for the parameters of the
individual Gaussians θk = (µk ,Σk).

For π, Q is maximized by setting

πk =
1

N

∑
i

rik ∀k

For µk and Σk , we only have to look at the second part of Q

`(µk ,Σk) =
N∑
i=1

K∑
k=1

rik log p(xi |Θk)

= −1

2

∑
i

rik [log |Σk |+ (xi − µk)>Σk(xi − µk)]
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Machine Learning 2. Mixture Models & EM Algorithm

Maximization Step (II)

`(µk ,Σk) is maximized for:

µk =

∑n
i=1 ri ,kxi∑k
i=1 ri ,k

And

Σk =

∑n
i=1 ri ,k(xi − µk)>(xi − µk)∑n

i=1 ri ,k

=

∑n
i=1 ri ,kx

T
i xi − µ>k µk∑n

i=1 ri ,k
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Machine Learning 2. Mixture Models & EM Algorithm

Gaussian Mixtures for Soft Clustering

I The responsibilities r ∈ [0, 1]N×K are a soft partition.

P := r

I The negative expected loglikelihood can be used as cluster distortion:

D(P) := −max
Θ

Q(Θ, r)

I To optimize D, we simply can run EM.

For hard clustering:

I assign points to the cluster with highest responsibility (hard EM):

r
(t−1)
i ,k = δ(k = arg max

k ′=1,...,K
r̃

(t−1)
i ,k ′ ) (0b′)
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Machine Learning 2. Mixture Models & EM Algorithm

Gaussian Mixtures for Soft Clustering / Example
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Machine Learning 2. Mixture Models & EM Algorithm

Gaussian Mixtures for Soft Clustering / Example
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Gaussian Mixtures for Soft Clustering / Example
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Machine Learning 2. Mixture Models & EM Algorithm

Model-based Cluster Analysis

Different parametrizations of the covariance matrices Σk restrict possible
cluster shapes:

I full Σ:
all sorts of ellipsoid clusters.

I diagonal Σ:
ellipsoid clusters with axis-parallel axes

I unit Σ:
spherical clusters.

One also distinguishes

I cluster-specific Σk :
each cluster can have its own shape.

I shared Σk = Σ:
all clusters have the same shape.
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