Machine Learning
 B. Unsupervised Learning
 B. 2 Dimensionality Reduction

Lars Schmidt-Thieme, Nicolas Schilling

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Outline

1. Principal Components Analysis
2. Non-linear Dimensionality Reduction
3. Supervised Dimensionality Reduction

Outline

1. Principal Components Analysis

2. Non-linear Dimensionality Reduction

3. Supervised Dimensionality Reduction

The Dimensionality Reduction Problem

Given

- a set \mathcal{X} called data space, e.g., $\mathcal{X}:=\mathbb{R}^{m}$,
- a set $X \subseteq \mathcal{X}$ called data,
- a function

$$
D: \bigcup_{X \subseteq \mathcal{X}, K \in \mathbb{N}}\left(\mathbb{R}^{K}\right)^{X} \rightarrow \mathbb{R}_{0}^{+}
$$

called distortion where $D(P)$ measures how bad a low dimensional representation $P: X \rightarrow \mathbb{R}^{K}$ for a data set $X \subseteq \mathcal{X}$ is, and

- a number $K \in \mathbb{N}$ of latent dimensions, find a low dimensional representation $P: X \rightarrow \mathbb{R}^{K}$ with K dimensions with minimal distortion $D(P)$.

Distortions for Dimensionality Reduction (1/2)

Let $d_{\mathcal{X}}$ be a distance on \mathcal{X} and d_{Z} be a distance on the latent space \mathbb{R}^{K}, usually just the Euclidean distance

$$
d_{Z}(v, w):=\|v-w\|_{2}=\left(\sum_{i=1}^{K}\left(v_{i}-w_{i}\right)^{2}\right)^{\frac{1}{2}}
$$

Multidimensional scaling aims to find latent representations P that reproduce the distance measure $d_{\mathcal{X}}$ as good as possible:

$$
\begin{aligned}
D(P) & :=\frac{2}{|X|(|X|-1)} \sum_{\substack{x, x^{\prime} \in X \\
x \neq x^{\prime}}}\left(d_{\mathcal{X}}\left(x, x^{\prime}\right)-d_{Z}\left(P(x), P\left(x^{\prime}\right)\right)\right)^{2} \\
& =\frac{2}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{i-1}\left(d_{\mathcal{X}}\left(x_{i}, x_{j}\right)-\| z_{i}-z_{j}| |\right)^{2}, \quad z_{i}:=P\left(x_{i}\right)
\end{aligned}
$$

Distortions for Dimensionality Reduction (2/2)

Feature reconstruction methods aim to find latent representations P and reconstruction maps $r: \mathbb{R}^{K} \rightarrow \mathcal{X}$ from a given class of maps that reconstruct features as good as possible:

$$
\begin{aligned}
D(P, r) & :=\frac{1}{|X|} \sum_{x \in X} d_{\mathcal{X}}(x, r(P(x))) \\
& =\frac{1}{n} \sum_{i=1}^{n} d_{\mathcal{X}}\left(x_{i}, r\left(z_{i}\right)\right), \quad z_{i}:=P\left(x_{i}\right)
\end{aligned}
$$

PCA: Intuition

- We want to find an orthogonal basis which represent directions of maximum variance

PCA: Intuition

- we want to find an orthogonal basis which represent directions of maximum variance
- red line indicates direction of maximal variance within the data

PCA: Intuition

- we want to find an orthogonal basis which represent directions of maximum variance
- red line indicates direction of maximal variance within the data
- blue line represents direction of maximal variance given that it has to be orthogonal to the red line

PCA: Task

We assume that the data has mean Zero:

$$
\sum_{i=1}^{n} x_{i}=\mathbf{0}
$$

Then PCA can be accomplished by finding the top K eigenvalues of the covariance matrix $X^{\top} X$ of the data!

- Mean has to be zero to account for different units in the data (Degrees C vs Degrees F)
- Can also be accomplished through a singular value decomposition of the data matrix X as we will see

Singular Value Decomposition (SVD)

Theorem (Existence of SVD)
For every $A \in \mathbb{R}^{n \times m}$ there exist matrices

$$
\begin{array}{cr}
U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}, \Sigma:=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in \mathbb{R}^{k \times k}, \quad k:=\min \{n, m\} \\
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{k}=0, & r:=\operatorname{rank}(A)
\end{array}
$$

with

$$
A=U \Sigma V^{T}
$$

σ_{i} are called singular values of A.

Note: $I:=\operatorname{diag}(1, \ldots, 1) \in \mathbb{R}^{k \times k}$ denotes the unit matrix.

Singular Value Decomposition (SVD; 2/2)

It holds:
a) σ_{i}^{2} are eigenvalues and V_{i} eigenvectors of $A^{T} A$:

$$
\left(A^{T} A\right) V_{i}=\sigma_{i}^{2} V_{i}, \quad i=1, \ldots, k, V=\left(V_{1}, \ldots, V_{k}\right)
$$

b) σ_{i}^{2} are eigenvalues and U_{i} eigenvectors of $A A^{T}$:

$$
\left(A A^{T}\right) U_{i}=\sigma_{i}^{2} U_{i}, \quad i=1, \ldots, k, U=\left(U_{1}, \ldots, U_{k}\right)
$$

Singular Value Decomposition (SVD; 2/2)

It holds:
a) σ_{i}^{2} are eigenvalues and V_{i} eigenvectors of $A^{T} A$:

$$
\left(A^{T} A\right) V_{i}=\sigma_{i}^{2} V_{i}, \quad i=1, \ldots, k, V=\left(V_{1}, \ldots, V_{k}\right)
$$

b) σ_{i}^{2} are eigenvalues and U_{i} eigenvectors of $A A^{T}$:

$$
\left(A A^{T}\right) U_{i}=\sigma_{i}^{2} U_{i}, \quad i=1, \ldots, k, U=\left(U_{1}, \ldots, U_{k}\right)
$$

proof:

$$
\begin{aligned}
& \text { a) }\left(A^{T} A\right) V_{i}=V \Sigma^{T} U^{T} U \Sigma V^{T} V_{i}=V \Sigma^{2} e_{i}=\sigma_{i}^{2} V_{i} \\
& \text { b) }\left(A A^{T}\right) U_{i}=U \Sigma^{T} V^{T} V \Sigma^{T} U^{T} U_{i}=U \Sigma^{2} e_{i}=\sigma_{i}^{2} U_{i}
\end{aligned}
$$

Truncated SVD

Let $A \in \mathbb{R}^{n \times m}$ and $U \Sigma V^{\top}=A$ its $S V D$. Then for $k^{\prime} \leq \min \{n, m\}$ the decomposition

$$
A=U^{\prime} \Sigma^{\prime} V^{\prime} T
$$

with

$$
U^{\prime}:=\left(U_{, 1}, \ldots, U_{, k^{\prime}}\right), V^{\prime}:=\left(V_{, 1}, \ldots, V_{, k^{\prime}}\right), \Sigma^{\prime}:=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k^{\prime}}\right)
$$

is called truncated SVD with rank k^{\prime}.

Low Rank Approximation

Let $A \in \mathbb{R}^{n \times m}$. For $k \leq \min \{n, m\}$, any pair of matrices

$$
U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}
$$

is called a low rank approximation of A with rank k.
The matrix

$$
U V^{T}
$$

is called the reconstruction of A by U, V and the quantity

$$
\left\|A-U V^{T}\right\|_{F}
$$

the L2 reconstruction error.

Low Rank Approximation

Let $A \in \mathbb{R}^{n \times m}$. For $k \leq \min \{n, m\}$, any pair of matrices

$$
U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}
$$

is called a low rank approximation of A with rank k.
The matrix

$$
U V^{T}
$$

is called the reconstruction of A by U, V and the quantity

$$
\left\|A-U V^{T}\right\|_{F}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(A_{i, j}-U_{i}^{T} V_{j}\right)^{2}
$$

the L2 reconstruction error.
Note: $\|A\|_{F}$ is called Frobenius norm.

Optimal Low Rank Approximation is Truncated SVD

Theorem (Low Rank Approximation; Eckart-Young theorem)
Let $A \in \mathbb{R}^{n \times m}$. For $k^{\prime} \leq \min \{n, m\}$, the optimal low rank approximation of rank k^{\prime} (i.e., with smallest reconstruction error)

$$
\left(U^{*}, V^{*}\right):=\underset{U \in \mathbb{R}^{n \times k^{\prime}}, V \in \mathbb{R}^{m \times k^{\prime}}}{\arg \min }\left\|A-U V^{T}\right\|^{2}
$$

is the truncated SVD.

Note: As U, V do not have to be orthonormal, one can take $U:=U^{\prime} \sum_{\vec{d}}^{\prime} V:=V^{\prime}$ for the $\operatorname{SVD} A=U^{\prime} \Sigma^{\prime} V^{\prime T}$

Principal Components Analysis (PCA)

Let $X:=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{m}$ be a data set and $K \in \mathbb{N}$ the number of latent dimensions $(K \leq m)$.

PCA finds

- K principal components $v_{1}, \ldots, v_{K} \in \mathbb{R}^{m}$ and
- latent weights $z_{i} \in \mathbb{R}^{K}$ for each data point $i \in\{1, \ldots, n\}$, such that the linear combination of the principal components

$$
x_{i} \approx \sum_{k=1}^{K} z_{i, k} v_{k}
$$

reconstructs the original features x_{i} as good as possible:

Principal Components Analysis (PCA)

Let $X:=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{m}$ be a data set and $K \in \mathbb{N}$ the number of latent dimensions $(K \leq m)$.

PCA finds

- K principal components $v_{1}, \ldots, v_{K} \in \mathbb{R}^{m}$ and
- latent weights $z_{i} \in \mathbb{R}^{K}$ for each data point $i \in\{1, \ldots, n\}$, such that the linear combination of the principal components reconstructs the original features x_{i} as good as possible:

$$
\begin{aligned}
& \underset{\substack{v_{1}, \ldots, v_{K} \\
z_{1}, \ldots, z_{n}}}{\arg \min }
\end{aligned} \sum_{i=1}^{n}\left\|x_{i}-\sum_{k=1}^{K} z_{i, k} v_{k}\right\|^{2} .
$$

Principal Components Analysis (PCA)

Let $X:=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{m}$ be a data set and $K \in \mathbb{N}$ the number of latent dimensions $(K \leq m)$.

PCA finds

- K principal components $v_{1}, \ldots, v_{K} \in \mathbb{R}^{m}$ and
- latent weights $z_{i} \in \mathbb{R}^{K}$ for each data point $i \in\{1, \ldots, n\}$, such that the linear combination of the principal components reconstructs the original features x_{i} as good as possible:

$$
\begin{aligned}
\underset{\substack{v_{1}, \ldots, v_{k} \\
z_{1}, \ldots, z n}}{\arg \min } & \sum_{i=1}^{n}\left\|x_{i}-\sum_{k=1}^{K} z_{i, k} v_{k}\right\|^{2} \\
& =\sum_{i=1}^{n}\left\|x_{i}-V z_{i}\right\|^{2}, \quad V:=\left(v_{1}, \ldots, v_{K}\right)^{T} \\
& =\left\|X-Z V^{T}\right\|_{F}^{2}, \quad X:=\left(x_{1}, \ldots, x_{n}\right)^{T}, Z:=\left(z_{1}, \ldots, z_{n}\right)^{T}
\end{aligned}
$$

thus PCA is just the SVD of the data matrix X.

PCA Algorithm

```
1: procedure DimRED-PCA \(\left(\mathcal{D}:=\left\{x_{1}, \ldots, x_{N}\right\} \subseteq \mathbb{R}^{M}, K \in \mathbb{N}\right)\)
2: \(\quad X:=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T}\)
3: \(\quad(U, \Sigma, V):=\operatorname{svd}(X)\)
4: \(\quad Z:=U_{., 1: K} \cdot \Sigma_{1: K, 1: K}\)
5: \(\quad\) return \(\mathcal{D}^{\text {dimreed }}:=\left\{Z_{1,,}, \ldots, Z_{N, .}\right\}\)
```


Principal Components Analysis (Example 1)

Principal Components Analysis (Example 1)

[HTFF05, p. 536]

Principal Components Analysis (Example 2)

Principal Components Analysis (Example 2)

[HTFF05, p. 538]

Outline

1. Principal Components Analysis

2. Non-linear Dimensionality Reduction

3. Supervised Dimensionality Reduction

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:

1. compute lower dimensional representations for given data points x_{i}

- for PCA:

$$
u_{i}=\Sigma^{-1} V^{T} x_{i}, \quad U:=\left(u_{1}, \ldots, u_{n}\right)^{T}
$$

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:

1. compute lower dimensional representations for given data points x_{i}

- for PCA:

$$
u_{i}=\Sigma^{-1} V^{T} x_{i}, \quad U:=\left(u_{1}, \ldots, u_{n}\right)^{T}
$$

2. compute lower dimensional representations for new data points x (often called "fold in")

- for PCA:

$$
u:=\underset{u}{\arg \min }\|x-V \Sigma u\|^{2}=\Sigma^{-1} V^{\top} x
$$

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:

1. compute lower dimensional representations for given data points x_{i}

- for PCA:

$$
u_{i}=\Sigma^{-1} V^{T} x_{i}, \quad U:=\left(u_{1}, \ldots, u_{n}\right)^{T}
$$

2. compute lower dimensional representations for new data points x (often called "fold in")

- for PCA:

$$
u:=\underset{u}{\arg \min }\|x-V \Sigma u\|^{2}=\Sigma^{-1} V^{T} x
$$

PCA is called a linear dimensionality reduction technique because the latent representations u depend linearly on the observed representations x.

Kernel Trick

Represent (conceptionally) non-linearity by linearity in a higher dimensional embedding

$$
\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\tilde{m}}
$$

but compute in lower dimensionality for methods that depend on x only through a scalar product

$$
\tilde{x}^{T} \tilde{\theta}=\phi(x)^{T} \phi(\theta)=k(x, \theta), \quad x, \theta \in \mathbb{R}^{m}
$$

if k can be computed without explicitly computing ϕ.

Kernel Trick / Example

Example:

$$
\left.\left.\begin{array}{rl}
\phi: & \mathbb{R}
\end{array} \rightarrow \mathbb{R}^{1001}, \quad \begin{array}{c}
1000 \\
x
\end{array}\right)^{\frac{1}{2}} x^{i}\right)_{i=0, \ldots, 1000}=\left(\begin{array}{c}
31.62 x \\
706.75 x^{2} \\
\vdots \\
31.62 x^{999} \\
x^{1000}
\end{array}\right) .
$$

Naive computation:

- 2002 binomial coefficients, 3003 multiplications, 1000 additions.

Kernel computation:

- 1 multiplication, 1 addition, 1 exponentiation.

Kernel PCA

$$
\begin{gathered}
\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\tilde{m}}, \quad \tilde{m} \gg m \\
\tilde{x}:=\left(\begin{array}{c}
\phi\left(x_{1}\right) \\
\phi\left(x_{2}\right) \\
\vdots \\
\phi\left(x_{n}\right)
\end{array}\right) \\
\tilde{x} \approx U \Sigma \tilde{V}^{T}
\end{gathered}
$$

We can compute the columns of U as eigenvectors of $\tilde{X} \tilde{X}^{\top} \in \mathbb{R}^{n \times n}$ without having to compute $\tilde{V} \in \mathbb{R}^{\tilde{m} \times k}$ (which is large!):

$$
\tilde{X} \tilde{X}^{\top} U_{i}=\sigma_{i}^{2} U_{i}
$$

Kernel PCA / Removing the Mean

Issue 1: The $\tilde{x}_{i}:=\phi\left(x_{i}\right)$ may not have zero mean and thus distort PCA.

$$
\tilde{x}_{i}^{\prime}:=\tilde{x}_{i}-\frac{1}{n} \sum_{i=1}^{n} \tilde{x}_{i}
$$

Kernel PCA / Removing the Mean

Issue 1: The $\tilde{x}_{i}:=\phi\left(x_{i}\right)$ may not have zero mean and thus distort PCA.

$$
\begin{aligned}
\tilde{x}_{i}^{\prime} & :=\tilde{x}_{i}-\frac{1}{n} \sum_{i=1}^{n} \tilde{x}_{i} \\
& =\tilde{X}^{T}\left(I-\frac{1}{n} 11\right) \\
\tilde{X}^{\prime} & :=\left(\tilde{x}_{1}^{\prime}, \ldots, \tilde{x}_{n}^{\prime}\right)^{T}=\left(1-\frac{1}{n} 1\right) \tilde{X}^{T}
\end{aligned}
$$

Note: $\mathbb{1}:=(1)_{i=1, \ldots, n, j=1, \ldots, n}$ vector of ones,

Kernel PCA / Removing the Mean

Issue 1: The $\tilde{x}_{i}:=\phi\left(x_{i}\right)$ may not have zero mean and thus distort PCA.

$$
\begin{aligned}
\tilde{x}_{i}^{\prime} & :=\tilde{x}_{i}-\frac{1}{n} \sum_{i=1}^{n} \tilde{x}_{i} \\
& =\tilde{X}^{T}\left(I-\frac{1}{n} \mathbb{1}\right) \\
\tilde{X}^{\prime} & :=\left(\tilde{x}_{1}^{\prime}, \ldots, \tilde{x}_{n}^{\prime}\right)^{T}=\left(I-\frac{1}{n} \rrbracket\right) \tilde{X}^{T} \\
K^{\prime} & :=\tilde{X}^{\prime} \tilde{X}^{\prime T}=\left(I-\frac{1}{n} \mathbb{1}\right) \tilde{X}^{T} \tilde{X}\left(I-\frac{1}{n} \mathbb{1}\right) \\
& =H K H, \quad H:=\left(I-\frac{1}{n} \mathbb{1}\right) \text { centering matrix }
\end{aligned}
$$

Thus, the kernel matrix K^{\prime} with means removed can be computed from the kernel matrix K without having to access coordinates.

Kernel PCA / Fold In

Issue 2: How to compute projections u of new points \times (as \tilde{V} is not computed)?

$$
u:=\underset{u}{\arg \min }\|x-\tilde{V} \Sigma u\|^{2}=\Sigma^{-1} \tilde{V}^{T} x
$$

With

$$
\begin{aligned}
\tilde{V} & =\tilde{X}^{T} U \Sigma^{-1} \\
u & =\Sigma^{-1} \tilde{V}^{T} x=\Sigma^{-1} \Sigma^{-1} U^{T} \tilde{X} x=\Sigma^{-2} U^{T}\left(k\left(x_{i}, x\right)\right)_{i=1, \ldots, n}
\end{aligned}
$$

u can be computed with access to kernel values only (and to U, Σ).

Kernel PCA / Summary

Given:

- data set $X:=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{m}$,
- kernel function $k: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow R$.
task 1: Learn latent representations U of data set X :

$$
\begin{align*}
K & :=\left(K\left(x_{i}, x_{j}\right)\right)_{i=1, \ldots, n, j=1, \ldots, n} \tag{0}\\
K^{\prime} & :=H K H, \quad H:=\left(I-\frac{1}{n} 11\right) \tag{1}\\
(U, \Sigma) & :=\text { eigen decomposition }\left(K^{\prime}\right) \tag{2}
\end{align*}
$$

task 2: Learn latent representation u of new point x :

$$
\begin{equation*}
u:=\Sigma^{-2} U^{T}\left(k\left(x_{i}, x\right)\right)_{i=1, \ldots, n} \tag{3}
\end{equation*}
$$

Kernel PCA: Example 1

[Mur12, p. 493]

Kernel PCA: Example 2

[Mur12, p. 495]

Kernel PCA: Example 2

[Mur12, p. 495]

Outline

1. Principal Components Analysis

2. Non-linear Dimensionality Reduction

3. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing

Given a prediction task and
a data set $\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subseteq \mathbb{R}^{m} \times \mathcal{Y}$.

1. compute latent features $z_{i} \in \mathbb{R}^{K}$ for the objects of a data set by means of dimensionality reduction of the predictors x_{i}.

- e.g., using PCA on $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R}^{m}$

2. learn a prediction model

$$
\hat{y}: \mathbb{R}^{K} \rightarrow \mathcal{Y}
$$

on the latent features based on

$$
\mathcal{D}^{\text {train }}:=\left\{\left(z_{1}, y_{1}\right), \ldots,\left(z_{n}, y_{n}\right)\right\}
$$

3. treat the number K of latent dimensions as hyperparameter.

- e.g., find using grid search.

Dimensionality Reduction as Pre-Processing

Advantages:

- simple procedure
- generic procedure
- works with any dimensionality reduction method and prediction method as component methods.
- usually fast

Dimensionality Reduction as Pre-Processing

Advantages:

- simple procedure
- generic procedure
- works with any dimensionality reduction method and prediction method as component methods.
- usually fast

Disadvantages:

- dimensionality reduction is unsupervised, i.e., not informed about the target that should be predicted later on.
- leads to the very same latent features regardless of the prediction task.
- likely not the best task-specific features are extracted.

Supervised PCA

$$
\begin{aligned}
p(z) & :=\mathcal{N}(z ; 0,1) \\
p\left(x \mid z ; \mu_{x}, \sigma_{x}^{2}, W_{x}\right) & :=\mathcal{N}\left(x ; \mu_{x}+W_{x} z, \sigma_{x}^{2} I\right) \\
p\left(y \mid z ; \mu_{y}, \sigma_{y}^{2}, W_{y}\right) & :=\mathcal{N}\left(y ; \mu_{y}+W_{y} z, \sigma_{y}^{2} I\right)
\end{aligned}
$$

- like two PCAs, coupled by shared latent features z :
- one for the predictors x.
- one for the targets y.
- latent features act as information bottleneck.
- also known as Latent Factor Regression or Bayesian Factor Regression.

Supervised PCA: Discriminative Likelihood

A simple likelihood would put the same weight on

- reconstructing the predictors and
- reconstructing the targets.

A weight $\alpha \in \mathbb{R}_{0}^{+}$for the reconstruction error of the predictors should be introduced (discriminative likelihood):

$$
L_{\alpha}(\Theta ; x, y, z):=\prod_{i=1}^{n} p\left(y_{i} \mid z_{i} ; \Theta\right) p\left(x_{i} \mid z_{i} ; \Theta\right)^{\alpha} p\left(z_{i} ; \Theta\right)
$$

α can be treated as hyperparameter and found by grid search.

Supervised PCA: EM

- The M -steps for $\mu_{x}, \sigma_{x}^{2}, W_{x}$ and $\mu_{y}, \sigma_{y}^{2}, W_{y}$ are exactly as before.
- the coupled E-step is:

$$
\begin{gathered}
z_{i}=\left(\frac{1}{\sigma_{y}^{2}} W_{y}^{T} W_{y}+\alpha \frac{1}{\sigma_{x}^{2}} W_{x}^{T} W_{x}\right)^{-1} \\
\left(\frac{1}{\sigma_{y}^{2}} W_{y}^{T}\left(y_{i}-\mu_{y}\right)+\alpha \frac{1}{\sigma_{x}^{2}} W_{x}^{T}\left(x_{i}-\mu_{x}\right)\right)
\end{gathered}
$$

Conclusion (1/3)

- Dimensionality reduction aims to find a lower dimensional representation of data that preserves the information as much as possible. - "Preserving information" means
- to preserve pairwise distances between objects (multidimensional scaling).
- to be able to reconstruct the original object features (feature reconstruction).
- The truncated Singular Value Decomposition (SVD) provides the best low rank factorization of a matrix in two factor matrices.
- SVD is usually computed by an algebraic factorization method (such as QR decomposition).

Conclusion (2/3)

- Principal components analysis (PCA) finds latent object and variable features that provide the best linear reconstruction (in L2 error).
- PCA is a truncated SVD of the data matrix.
- Probabilistic PCA (PPCA) provides a probabilistic interpretation of PCA.
- PPCA adds a L 2 regularization of the object features.
- PPCA is learned by the EM algorithm.
- Adding L2 regularization for the linear reconstruction/variable features on top leads to Bayesian PCA.
- Generalizing to variable-specific variances leads to Factor Analysis.
- For both, Bayesian PCA and Factor Analysis, EM can be adapted easily.

Conclusion (3/3)

- To capture a nonlinear relationship between latent features and observed features, PCA can be kernelized (Kernel PCA).
- Learning a Kernel PCA is done by an eigen decomposition of the kernel matrix.
- Kernel PCA often is found to lead to "unnatural visualizations".
- But Kernel PCA sometimes provides better classification performance for simple classifiers on latent features (such as 1-Nearest Neighbor).

Readings

- Principal Components Analysis (PCA)
- [HTFF05], ch. 14.5.1, [Bis06], ch. 12.1, [Mur12], ch. 12.2.
- Probabilistic PCA
- [Bis06], ch. 12.2, [Mur12], ch. 12.2.4.
- Factor Analysis
- [HTFF05], ch. 14.7.1, [Bis06], ch. 12.2.4.
- Kernel PCA
- [HTFF05], ch. 14.5.4, [Bis06], ch. 12.3, [Mur12], ch. 14.4.4.

Further Readings

- (Non-negative) Matrix Factorization
- [HTFF05], ch. 14.6
- Independent Component Analysis, Exploratory Projection Pursuit
- [HTFF05], ch. 14.7 [Bis06], ch. 12.4 [Mur12], ch. 12.6.
- Nonlinear Dimensionality Reduction
- [HTFF05], ch. 14.9, [Bis06], ch. 12.4

References

Christopher M. Bishop.
Pattern recognition and machine learning, volume 1.
springer New York, 2006.
Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.
The elements of statistical learning: data mining, inference and prediction, volume 27. 2005.

Kevin P. Murphy.
Machine learning: a probabilistic perspective.
The MIT Press, 2012.

