Machine Learning Exercise Sheet 6

Prof. Dr. Dr. Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab University of Hildesheim

November 28th, 2016 Submission until December 5th, 13.00 via learnweb!

Exercise 11: Hypothesis Tests for LR Parameters (10 Points)

For the following data:

x_1	x_2	y
1	2	2
4	-2	-3.3
2	3	3.5
-5	-1	-2.8
-1	2	1.8

a linear regression model given by the parameters

$$\beta^{\top} = \begin{pmatrix} -1 & 0.3 & 1.4 \end{pmatrix}$$

has been learned. Perform a (two sided) hypothesis test on all of the parameters, where

$$H_0: \beta_i = 0 \qquad H_1: \beta_i \neq 0$$

in order to determine which parameters are significant. What are the resulting standardized coefficients? Use a significance level of $\alpha = 0.05$. Which variables are significant?

Exercise 12: (Stochastic) Coordinate Descent for Polynomial Regression (10 Points)

- a) Describe the main difference between regular gradient descent and coordinate descent!
- **b)** Stochastic Gradient Descent (SGD) works very similar to normal gradient descent, the key difference is that only one data instance is used per update, i.e. the (regression) loss function for a single instance resolves to:

$$\mathcal{L}(y, \hat{y}(x)) = \frac{1}{2}(\hat{y}(x) - y)^2$$

For a polynomial regression of order two, i.e.

$$\hat{y}(x) = \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \sum_{l=1}^{p} \sum_{i=l}^{p} \beta_{lj} x_l x_j$$

Compute the update equations of a stochastic coordinate descent for all parameters β_0, β_i and β_{lj} for the single instance loss!