Machine Learning
 Exercise Sheet 2

Prof. Dr. Dr. Lars Schmidt-Thieme, Rafael Rego Drumond
HiWi's: Khouloud Sallami, Maurício Camargo, Shayan Jawed, Sami Diaf Information Systems and Machine Learning Lab
University of Hildesheim

November 2nd, 2017
Submission until November 9th 12:00(noon) by dropping at ISMLL postbox
(please indicate in which tutorial are you participating!)

Exercise 3: Gradient Descent (10 Points)

Apply gradient descent on the function $f(x)=\frac{1}{4} x^{4}+\frac{1}{3} x^{3}-\frac{1}{2} x^{2}$ under the following configurations and plot your results (minimum and the x value) for each iteration in each problem:
a) Use step length $\alpha=0.2$ and starting point $x_{0}=-1$ and show the first four iterations. What is your minimum?
b) Use step length $\alpha=3$ and starting point $x_{0}=-1$ and show the first four iterations. What has happened and why?
c) Use step length $\alpha=0.2$ and starting point $x_{0}=0$ and show the first two iterations. What has happened and why?
d) Do the same again with $\alpha=0.8$ and starting point $x_{0}=0.5$ and show the first four iterations. Where is your minimum now?

What would be a possible solution to overcome the problem just identified?

Exercise 4: Linear Regression (10 Points)

Given is following data:

x_{1}	x_{2}	y
4	2	6
6	-2	0
4	-2	-2
8	2	10
2	6	12

Learn a linear regression by estimating its parameters using normal equations (i.e. the closed form solution)! Do not forget to include the bias term!

