Syllabus

Fri. 21.10.	(1)	0. Introduction
		A. Supervised Learning: Linear Models & Fundamentals
Fri. 27.10.	(2)	A.1 Linear Regression
Fri. 3.11.	(3)	A.2 Linear Classification
Fri. 10.11.	(4)	A.3 Regularization
Fri. 17.11.	(5)	A.4 High-dimensional Data
		B. Supervised Learning: Nonlinear Models
Fri. 24.11.	(6)	B.1 Nearest-Neighbor Models
Fri. 1.12.	(7)	B.2 Neural Networks
Fri. 8.12.	(8)	B.3 Decision Trees
Fri. 15.12.	(9)	B.4 Support Vector Machines
Fri. 12.1.	(10)	B.5 A First Look at Bayesian and Markov Networks
		C. Unsupervised Learning
Fri. 19.1.	(11)	C.1 Clustering
Fri. 26.1.	(12)	C.2 Dimensionality Reduction
Fri. 2.2.	(13)	C.3 Frequent Pattern Mining

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 39

Machine Learning

Outline

- 1. What is Machine Learning?
- 2. A First View at Linear Regression
- 3. Machine Learning Problems
- 4. Lecture Overview
- 5. Organizational Stuff

Outline

- 1. What is Machine Learning?
- 2. A First View at Linear Regression
- 3. Machine Learning Problems
- 4. Lecture Overview
- 5. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. What is Machine Learning?

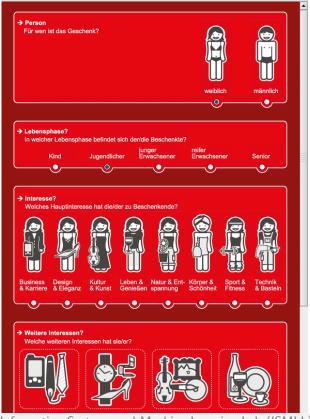
Jrivers/si.

What is Machine Learning?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

What is Machine Learning?

1. E-Commerce: predict what customers will buy.



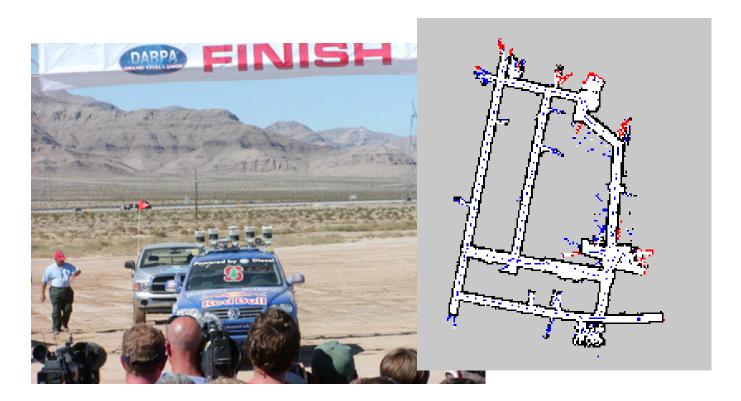
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. What is Machine Learning?

2 / 39

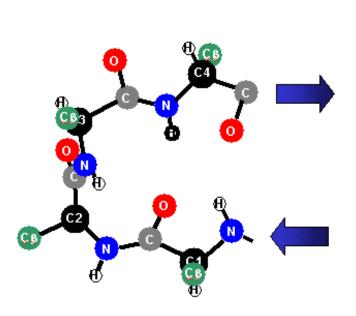
What is Machine Learning?

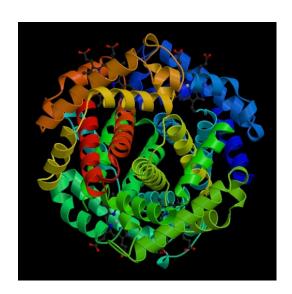
2. Robotics: Build a map of the environment based on sensor signals.



What is Machine Learning?

3. Bioinformatics: predict the 3d structure of a molecule based on its sequence.





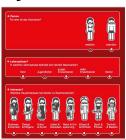
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. What is Machine Learning?

Jrivers/tag

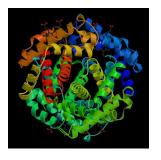
What is Machine Learning?

Information Systems



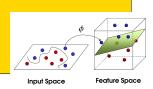
Robotics

Bioinformatics



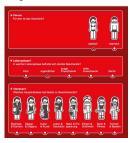
Many Further Applications!

MACHINE LEARNING



What is Machine Learning?

Information Systems



Robotics

Bioinformatics



Many Further Applications!

MACHINE LEARNING

OPTIMIZATION

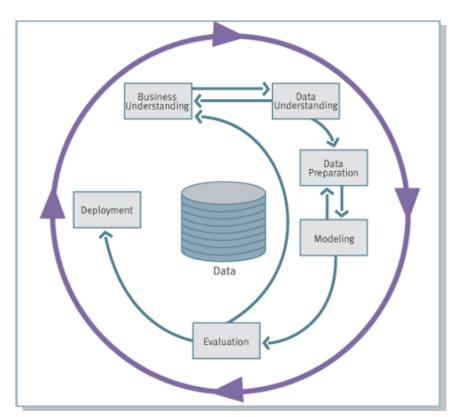
NUMERICS

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. What is Machine Learning?

6 / 39

Process models



Cross Industry Standard Process for Data Mining (CRISP-DM)

One area of research, many names (and aspects)

machine learning

historically, stresses learning logical or rule-based models (vs. probabilistic models).

data mining, big data

stresses the aspect of large datasets and complicated tasks.

knowledge discovery in databases (KDD)

stresses the embedding of machine learning tasks in applications, i.e., preprocessing & deployment.

data analysis historically, stresses multivariate regression and unsupervised tasks.

pattern recognition

name preferred by engineers, stresses cognitive applications such as image and speech analysis.

data science, applied statistics

stresses underlying statistical models, testing and methodical rigor.

predictive analytics, business analytics, data analytics

stresses business applications.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. A First View at Linear Regression

Outline

- 1. What is Machine Learning?
- 2. A First View at Linear Regression
- 3. Machine Learning Problems
- 4. Lecture Overview
- 5. Organizational Stuff

Example

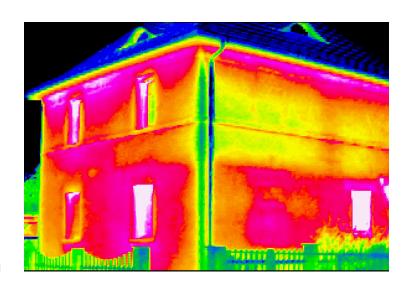
How does gas consumption depend on external temperature?

Example data (Whiteside, 1960s): weekly measurements of

- ► average external temperature
- ► total gas consumption (in 1000 cubic feets)

How does gas consumption depend on external temperature?

How much gas is needed for a given temperature ?

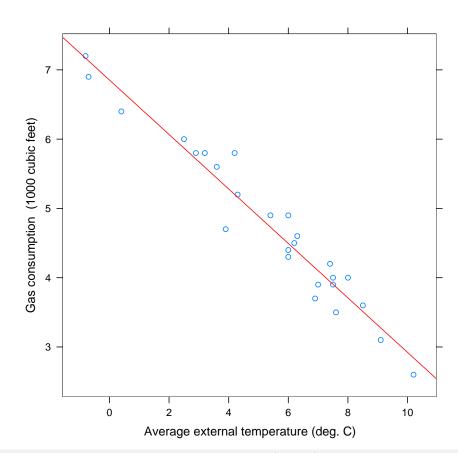


Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. A First View at Linear Regression

9 / 39

Example



The Simple Linear Regression Problem (yet vague)

Given

▶ a set $\mathcal{D}^{\mathsf{train}} := \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathbb{R} \times \mathbb{R}$ called **training data**,

compute the line that describes the data generating process best.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. A First View at Linear Regression

Onivers/

The Simple Linear Model

For given predictor/input $x \in \mathbb{R}$, the simple linear model predicts/outputs

$$\hat{y}(x) := \hat{\beta}_0 + \hat{\beta}_1 x$$

with **parameters** $(\hat{eta}_0,\hat{eta}_1)$ called

$$\hat{eta}_0$$
 intercept / bias / offset \hat{eta}_1 slope

1: **procedure** PREDICT-SIMPLE-LINREG $(x \in \mathbb{R}, \hat{\beta}_0, \hat{\beta}_1 \in \mathbb{R})$

- $2: \qquad \hat{\mathbf{y}} := \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}$
- 3: **return** \hat{y}

When is a Model Good?

We still need to specify what "describes the data generating process best" means. — What are good predictions $\hat{y}(x)$?

Predictions are considered better the smaller the difference between

- ▶ an **observed** y_n (for predictors x_n) and
- ▶ a **predicted** $\hat{y}_n := \hat{y}(x_n)$

is on average, e.g., the smaller the **L2 loss** / **squared error**:

$$\ell(y_n, \hat{y}_n) := (y_n - \hat{y}_n)^2$$

Note: Other error measures such as absolute error $\ell(y_n, \hat{y}_n) = |y_n - \hat{y}_n|$ are also possible, but more difficult to handle.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. A First View at Linear Regression

When is a Model Good?

Pointwise losses are usually averaged over a dataset ${\mathcal D}$

$$\operatorname{err}(\hat{y}; \mathcal{D}) := \frac{1}{N} \operatorname{RSS}(\hat{y}; \mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}(x_n))^2$$

or
$$\operatorname{err}(\hat{y}; \mathcal{D}) := \operatorname{RSS}(\hat{y}; \mathcal{D}) := \sum_{n=1}^{N} (y_n - \hat{y}(x_n))^2$$

called **residual sum of squares** (RSS) or generally **error**/**risk**.

Equivalently, often Root Mean Square Error (RMSE) is used:

$$\operatorname{err}(\hat{y}; \mathcal{D}) := \operatorname{\mathsf{RMSE}}(\hat{y}; \mathcal{D}) := \sqrt{\frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}(x_n))^2}$$

Note: RMSE has the same scale level / unit as the original target y, e.g., if y is measured in meters so is RMSE.

Generalization

We can trivially get a model with error zero on training data, e.g., by simply looking up the corresponding y_n for each x_n :

$$\hat{y}^{\mathsf{lookup}}(x) := egin{cases} y_n, & \mathsf{if} \ x = x_n \\ 0, & \mathsf{else} \end{cases}$$
 with $\mathsf{RSS}(\hat{y}^{\mathsf{lookup}}, \mathcal{D}^{\mathsf{train}}) = 0$ optimal

Models should not just reproduce the data, but **generalize**, i.e., predict well on fresh / unseen data (called **test data**).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. A First View at Linear Regression

Jrivers/

The Simple Linear Regression Problem

Given

▶ a set $\mathcal{D}^{\mathsf{train}} := \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathbb{R} \times \mathbb{R}$ called **training data**,

compute the parameters $(\hat{\beta}_0, \hat{\beta}_1)$ of a linear regression function

$$\hat{y}(x) := \hat{\beta}_0 + \hat{\beta}_1 x$$

s.t. for a set $\mathcal{D}^{\mathsf{test}} \subseteq \mathbb{R} \times \mathbb{R}$ called **test set** the **test error**

$$\operatorname{err}(\hat{y}; \mathcal{D}^{\operatorname{test}}) := \frac{1}{|D^{\operatorname{test}}|} \sum_{(x,y) \in \mathcal{D}^{\operatorname{test}}} (y - \hat{y}(x))^2$$

is minimal.

Note: $\mathcal{D}^{\text{test}}$ has (i) to be from the same data generating process and (ii) not to be available during training.

Least Squares Estimates

As $\mathcal{D}^{\text{test}}$ is not accessible during training, use $\mathcal{D}^{\text{train}}$ as proxy for $\mathcal{D}^{\text{test}}$:

ightharpoonup rationale: models predicting well on $\mathcal{D}^{\mathsf{train}}$ should also predict well on $\mathcal{D}^{\mathsf{test}}$ as both come from the same data generating process.

The parameters with minimal L2 loss for a dataset $\mathcal{D}^{\mathsf{train}} := \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}\$ are called **(ordinary) least** squares estimates:

$$egin{aligned} (\hat{eta}_0,\hat{eta}_1) := & rg \min_{\hat{eta}_0,\hat{eta}_1} \mathsf{RSS}(\hat{y},\mathcal{D}^{\mathsf{train}}) \ & := & rg \min_{\hat{eta}_0,\hat{eta}_1} \sum_{n=1}^N (y_n - \hat{y}(x_n))^2 \ & = & rg \min_{\hat{eta}_0,\hat{eta}_1} \sum_{n=1}^N (y_n - (\hat{eta}_0 + \hat{eta}_1 x_n))^2 \end{aligned}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. A First View at Linear Regression

Learning the Least Squares Estimates

The least squares estimates can be written in closed form:

$$\hat{\beta}_{1} = \frac{\sum_{n=1}^{N} (x_{n} - \bar{x})(y_{n} - \bar{y})}{\sum_{n=1}^{N} (x_{n} - \bar{x})^{2}}$$
$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

1: procedure

LEARN-SIMPLE-LINREG $(\mathcal{D}^{\mathsf{train}} := \{(x_1, y_1), \dots, (x_N, y_N)\} \in \mathbb{R} \times \mathbb{R})$

2:
$$\bar{x} := \frac{1}{N} \sum_{n=1}^{N} x_n$$

3:
$$\bar{y} := \frac{1}{N} \sum_{n=1}^{N} y_n$$

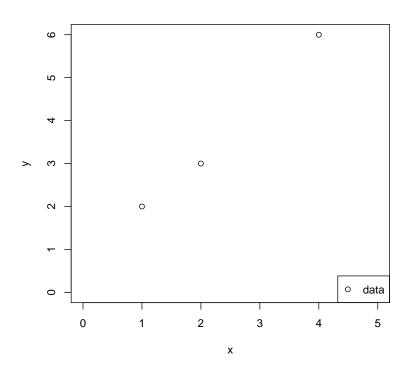
1 LEARN-SIMPLE-LINREG(
$$D$$
2: $\bar{x} := \frac{1}{N} \sum_{n=1}^{N} x_n$
3: $\bar{y} := \frac{1}{N} \sum_{n=1}^{N} y_n$
4: $\hat{\beta}_1 := \frac{\sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})}{\sum_{n=1}^{N} (x_n - \bar{x})^2}$

5:
$$\hat{\beta}_0 := \bar{y} - \hat{\beta}_1 \bar{x}$$

6: **return**
$$(\hat{\beta}_0, \hat{\beta}_1)$$

A Toy Example

Given the data $\mathcal{D} := \{(1,2), (2,3), (4,6)\}$, predict a value for x = 3.



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

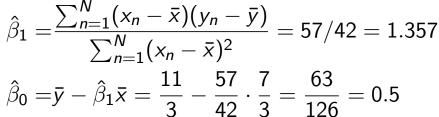
Machine Learning 2. A First View at Linear Regression

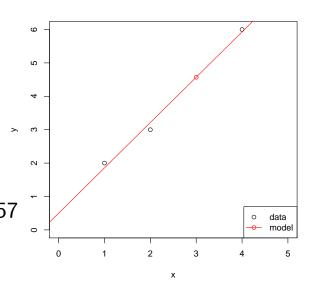
A Toy Example / Least Squares Estimates

Given the data $\mathcal{D} := \{(1,2),(2,3),(4,6)\}$, predict a value for x = 3. Use a simple linear model.

$$\bar{x} = 7/3$$
, $\bar{y} = 11/3$.

				$(x_n-\bar{x})$
n	$x_n - \bar{x}$	$y_n - \bar{y}$	$(x_n-\bar{x})^2$	$\cdot (y_n - \bar{y})$
1	-4/3	-5/3	16/9	20/9
2	-1/3	-2/3	1/9	2/9
3	5/3	7/3	25/9	35/9
\sum			42/9	57/9
	∇^N (<	· · · · · · · ·	





A Toy Example / Least Squares Estimates

Given the data $\mathcal{D} := \{(1,2), (2,3), (4,6)\}$, predict a value for x = 3. Use a simple linear model.

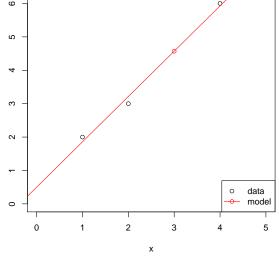
$$\hat{\beta}_{1} = \frac{\sum_{n=1}^{N} (x_{n} - \bar{x})(y_{n} - \bar{y})}{\sum_{n=1}^{N} (x_{n} - \bar{x})^{2}} = 57/42 = 1.357 \quad \text{a}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x} = \frac{11}{3} - \frac{57}{42} \cdot \frac{7}{3} = \frac{63}{126} = 0.5$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = \frac{11}{3} - \frac{57}{42} \cdot \frac{7}{3} = \frac{63}{126} = 0.5$$

RSS:

n	Уn	\hat{y}_n	$(y_n - \hat{y}_n)^2$
1	2	1.857	0.020
2	3	3.214	0.046
3	6	5.929	0.005
$\overline{\sum}$			0.071



$$\hat{y}(3) = 4.571$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 3. Machine Learning Problems

Outline

- 1. What is Machine Learning?
- 2. A First View at Linear Regression
- 3. Machine Learning Problems
- 4. Lecture Overview
- 5. Organizational Stuff

Regression

Real regression problems are more complex than simple linear regression in many aspects:

- ▶ There is more than one predictor.
- ► The target may depend non-linearly on the predictors.

Examples:

- predict sales figures.
- predict rating for a customer review.
- ▶ ...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 3. Machine Learning Problems

Shivers/

Classification

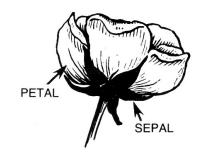
Example: classifying iris plants (Anderson 1935).

- species: setosa, versicolor, virginica
- ► length and width of sepals (in cm)
- ► length and width of petals (in cm)

Given the lengths and widths of sepals and petals of an instance, which iris species does it belong to?

iris virginica

iris versicolor



[source: iris species database, http://www.badbear.com/signa]

Classification

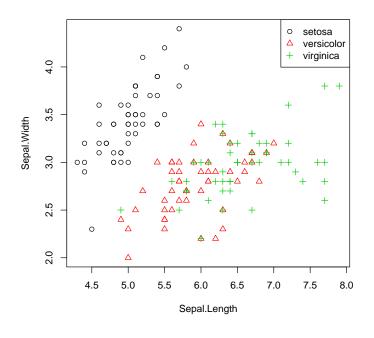
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.10	3.50	1.40	0.20	setosa
2	4.90	3.00	1.40	0.20	setosa
3	4.70	3.20	1.30	0.20	setosa
4	4.60	3.10	1.50	0.20	setosa
5	5.00	3.60	1.40	0.20	setosa
:	:	:	:	:	
51	7.00	3.20	4.70	1.40	versicolor
52	6.40	3.20	4.50	1.50	versicolor
53	6.90	3.10	4.90	1.50	versicolor
54	5.50	2.30	4.00	1.30	versicolor
:	:	:	:	:	
101	6.30	3.30	6.00	2.50	virginica
102	5.80	2.70	5.10	1.90	virginica

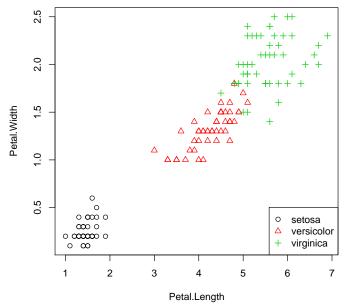
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 3. Machine Learning Problems

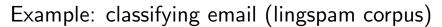
24 / 39

Classification





Classification



Subject: query: melcuk (melchuk)

does anybody know a working email (or other) address for igor melcuk (melchuk)?

Subject: '

hello! come see our naughty little city made especially for adults

http://208.26.207.98/freeweek/ enter.html once you get here, you won't want to leave!

legitimate email ("ham")

spam

How to classify email messages as spam or ham?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 3. Machine Learning Problems

26 / 39

Classification

Subject: query: melcuk (melchuk)

does anybody know a working email (or other) address for igor melcuk (melchuk)?

 \rightarrow

	a	1	
	address	1	
	anybody	1	
	does	1	
	email	1	
	for	1	
	igor	1	
	know	1	
	melcuk	2	
	melchuk	2	
İ	or	1	
	other	1	
	query	1	
	working	1	

Classification

lingspam corpus:

- email messages from a linguistics mailing list.
- ► 2414 ham messages.
- ▶ 481 spam messages.
- ► 54742 different words.
- ► an example for an early, but very small spam corpus.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 39

Machine Learning 3. Machine Learning Problems

Classification

All words that occur at least in each second spam or ham message on average (counting multiplicities):

	!	your	will	we	all	mail	from	do	our	email
spam	14.18	7.45	4.36	3.42	2.88	2.77	2.69	2.66	2.46	2.24
ham	0.38	0.46	1.93	0.94	0.83	0.79	1.60	0.57	0.30	0.39

	out	report	order	as	free	language	university
spam	2.19	2.14	2.09	2.07	2.04	0.04	0.05
ham	0.34	0.05	0.27	2.38	0.97	2.67	2.61

example rule:

if freq("!") \geq 7 and freq("language")=0 and freq("university")=0 then spam, else ham

Should we better normalize for message length?

Reinforcement Learning

A class of learning problems where

- ▶ the correct / optimal action never is shown,
- ▶ but only positive or negative feedback for an action actually taken is given.

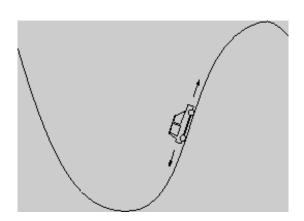
Example: steering the mountain car.

Observed are

- x-position of the car,
- ► velocity of the car

Possible actions are

- accelerate left.
- ▶ accelerate right,
- ▶ do nothing



The goal is to steer the car on top of the right hill.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 3. Machine Learning Problems

Reinforcement Learning / TD-Gammon

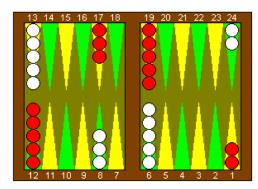


Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play. certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-9, 6-5, to TD-Gammon's preference, 13-9, 24-23. TD-Gammon's analysis is given in Table 2.

Program	Hidden	Training	Opponents	Results	
	Units	Games			
TD-Gam 0.0	40	300,000	Other Programs	Tied for Best	
TD-Gam 1.0	80	300,000	Robertie, Magriel,	-13 pts / 51 games	
TD-Gam 2.0	40	800,000	Var. Grandmasters	$-7 \mathrm{pts} / 38 \mathrm{games}$	
TD-Gam 2.1	80	1,500,000	Robertie	-1 pts / 40 games	
TD-Gam 3.0	80	1,500,000	Kazaros	+6 pts / 20 games	

Cluster Analysis

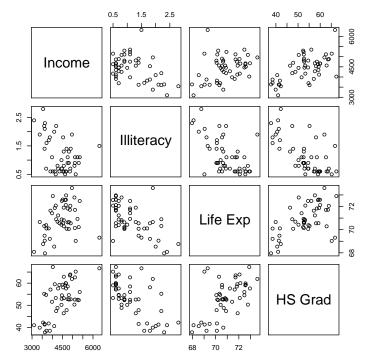
Finding groups of similar objects.

Example: sociographic data of the 50 US states in 1977.

state dataset:

- ▶ income (per capita, 1974),
- ▶ illiteracy (percent of population, 1970),
- ► life expectancy (in years, 1969–71),
- ► percent high-school graduates (1970).

(and some others not used here).



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 3. Machine Learning Problems

Fundamental Machine Learning Problems

2. Regression

3. Classification

4. Optimal Control

5. Clustering

6. Dimensionality Reduction

7. Association Analysis

Supervised Learning

Reinforcement Learning

Unsupervised Learning

Supervised learning: correct decision is observed (ground truth). Unsupervised learning: correct decision never is observed.

Outline

- 1. What is Machine Learning?
- 2. A First View at Linear Regression
- 3. Machine Learning Problems
- 4. Lecture Overview
- 5. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 4. Lecture Overview

Syllabus

Fri. 21.10.	(1)	0. Introduction
		A. Supervised Learning: Linear Models & Fundamentals
Fri. 27.10.	(2)	A.1 Linear Regression
Fri. 3.11.	(3)	A.2 Linear Classification
Fri. 10.11.	(4)	A.3 Regularization
Fri. 17.11.	(5)	A.4 High-dimensional Data
		B. Supervised Learning: Nonlinear Models
Fri. 24.11.	(6)	B.1 Nearest-Neighbor Models
Fri. 1.12.	(7)	B.2 Neural Networks
Fri. 8.12.	(8)	B.3 Decision Trees
Fri. 15.12.	(9)	B.4 Support Vector Machines
Fri. 12.1.	(10)	B.5 A First Look at Bayesian and Markov Networks
		C. Unsupervised Learning
Fri. 19.1.	(11)	C.1 Clustering
Fri. 26.1.	(12)	C.2 Dimensionality Reduction
Fri. 2.2.	(13)	C.3 Frequent Pattern Mining

Outline

- 1. What is Machine Learning?
- 2. A First View at Linear Regression
- 3. Machine Learning Problems
- 4. Lecture Overview
- 5. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 5. Organizational Stuff

Exercises and Tutorials (1/2)

- ▶ weekly sheet with 2 exercises
 - ► handed out each Thursday on the webpage https://www.ismll.uni-hildesheim.de/lehre/ml-17w/index_en.html.
 - ▶ 1st sheet was handed out yesterday, 26.10.
- ▶ Solutions to the exercises can be submitted digitally via Learn Web
 - ▶ until next Thursday noon (12:00 pm; 12 Uhr mittags)
 - ▶ 1st sheet is due Friday noon. 3.11.
- ► Exercises will be corrected.

Exercises and Tutorials (2/2)

- Tutorials:
 - Wednesday, 2pm 4pm (Samelsonplatz B026; Rafael Rego Drumond)
 - ► Wednesday, 8pm 10pm (Samelsonplatz C213; Shayan Jawed)
 - ► Wednesday, 8pm 10pm (Samelsonplatz G204; Sami Diaf)
 - ► Monday, 8am 10am (Samelsonplatz B026; Maurício Camargo)
 - ► Monday, 8am 10am (Samelsonplatz C213; Khouloud Sallami) starting next week.
- ► Successful participation in the tutorial gives up to 10% bonus points for the exam.
 - group submissions are OK (but yield no bonus points)
 - ▶ Plagiarism is illegal and usually leads to expulsion from the program.
 - about plagiarism see https://en.wikipedia.org/wiki/Plagiarism

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 5. Organizational Stuff

Jhivers/

Exam and Credit Points

- ► There will be a written exam at end of term (2h, 4 problems).
- ► The course gives 6 ECTS (2+2 SWS).
- ► The course can be used in
 - ► Angewandte Informatik BSc. / Informatik 5 (mandatory)
 - ▶ Data Analytics MSc. / Machine Learning (mandatory)
 - ► IMIT BSc. / Informatik 5 (mandatory)
 - ► Wirtschaftsinformatik BSc. / Vertiefung Maschinelles Lernen (elective)
 - Wirtschaftsinformatik MSc. / Business Intelligence / Maschinelles Lernen (elective)
- ► This course is a pre-requisite for most courses at ISMLL.
- ► Lab Programming Machine Learning is recommended in parallel.

Some Books

- ► Gareth James, Daniela Witten, Trevor Hastie, R. Tibshirani (2013): An Introduction to Statistical Learning with Applications in R, Springer.
- ► Kevin P. Murphy (2012): Machine Learning, A Probabilistic Approach, MIT Press.
- ► Trevor Hastie, Robert Tibshirani, Jerome Friedman (²2009): The Elements of Statistical Learning, Springer.

Also available online as PDF at http://www-stat.stanford.edu/ \sim tibs/ElemStatLearn/

- ► Christopher M. Bishop (2007): Pattern Recognition and Machine Learning, Springer.
- ► Richard O. Duda, Peter E. Hart, David G. Stork (²2001): Pattern Classification, Springer.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 5. Organizational Stuff

Some First Machine Learning Software

- scikit-learn (http://scikit-learn.org/.
 - ► Python based
- ► R (http://www.r-project.org).
 - statistical programming language in its own
- ► Weka (http://www.cs.waikato.ac.nz/~ml/).
 - ► Java based

Public data sets:

- ► UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/)
- UCI Knowledge Discovery in Databases Archive (http://kdd.ics.uci.edu/)

Further Readings

- ► For a general introduction: [JWHT13, chapter 1&2], [Mur12, chapter 1], [HTFF05, chapter 1&2].
- ► For linear regression: [JWHT13, chapter 3], [Mur12, chapter 7], [HTFF05, chapter 3].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

References

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction, volume 27. Springer, 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An introduction to statistical learning. Springer, 2013.

Kevin P. Murphy.

Machine learning: a probabilistic perspective.

The MIT Press, 2012.

40 / 39

Simple Linear Regression / Least Squares Estimates / Proof (p. 18):

$$RSS = \sum_{i=1}^{n} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$$

$$\frac{\partial RSS}{\partial \hat{\beta}_0} = \sum_{i=1}^{n} 2(y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))(-1) \stackrel{!}{=} 0$$

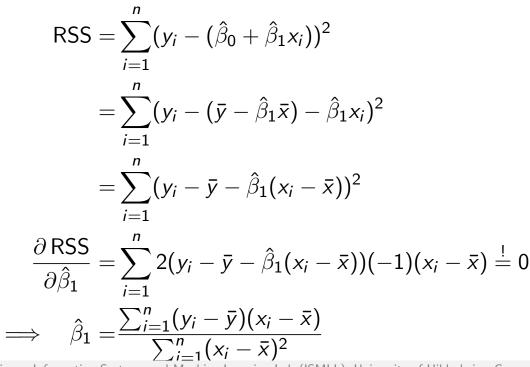
$$\implies n\hat{\beta}_0 = \sum_{i=1}^{n} (y_i - \hat{\beta}_1 x_i)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Simple Linear Regression / Least Squares Estimates , Proof

Proof (ctd.):



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany