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Syllabus

Fri. 27.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 3.11. (2) A.1 Linear Regression
Fri. 10.11. (3) A.2 Linear Classification
Fri. 17.11. (4) A.3 Regularization
Fri. 24.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 1.12. (6) B.1 Nearest-Neighbor Models
Fri. 8.12. (7) B.2 Neural Networks
Fri. 15.12. (8) B.3 Decision Trees
Fri. 12.1. (9) B.4 Support Vector Machines
Fri. 19.1. (10) B.5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning
Fri. 26.1. (11) C.1 Clustering
Fri. 2.2. (12) C.2 Dimensionality Reduction
Fri. 9.2. (13) C.3 Frequent Pattern Mining
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Fitting of models
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Machine Learning

Underfitting/Overfitting
Underfitting:

� the model is not complex enough to explain the data well.

� results in poor predictive performance.

Overfitting:
� the model is too complex, it describes the

� noise instead of the
� underlying relationship between target and predictors.

� results in poor predictive performance as well.

Remark: Given N points (xn, yn) without repeated measurements (i.e.
xn �= xm, n �= m), there exists a polynomial of degree N − 1 with RSS
equal to 0.
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Losses and Fit Measures
loss fit/quality measure

semantics the smaller, the better the larger, the better
goal minimize maximize

regression
RSS(y , ŷ)

:=
�N

n=1(yn − ŷn)
2

log LN (y , ŷ)

:=
�N

n=1− 1
2σ2

y
(yn − ŷn)

2

RMSE(y , ŷ)

:= ( 1
N

�N
n=1(yn − ŷn)

2)
1
2

MAE(y , ŷ)

:= 1
N

�N
n=1 |yn − ŷn|

classification
MR(y , ŷ)

:=
�N

n=1 I(yn �= ŷn)

ACC(y , ŷ)

:=
�N

n=1 I(yn = ŷn)

log Lbinomial(y , ŷ)

:=
�N

n=1 πI(yn = ŷn)
+(1− π)I(yn �= ŷn)
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Model Selection Measures
Model selection: given a set of models, e.g.,

Y =

p−1�

m=0

βmXm

indexed by p (i.e., one model for each value of p), make a choice which
model describes the data best.
If we just look at losses / fit measures such as RSS, then

the larger p, the better the fit

or equivalently

the larger p, the lower the loss

as the model with p parameters can be reparametrized in a model with
p� > p parameters by setting

β�
m =

�
βm, for m ≤ p
0, for m > p
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Model Selection Measures
One uses model selection measures of type

model selection measure = fit− complexity (max!)

or equivalently

model selection measure = loss + complexity (min!)

The smaller the loss (= lack of fit), the better the model.

The smaller the complexity, the simpler and thus better the model.

The model selection measure tries to find a trade-off between fit/loss and
complexity.
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Model Selection Measures

Akaike Information Criterion (AIC):
(maximize)

AIC := log L− p

or (minimize)
AIC := −2 log L+ 2p

Bayes Information Criterion (BIC) /
Bayes-Schwarz Information Criterion: (maximize)

BIC := log L− p

2
logN

where L denotes the likelihood, N the number of samples.
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Variable Backward Selection

{ A, F, H, I, J, L, P } 
AIC = 63.01
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Shrinkage

Model selection operates by

1. fitting model instances for a set of models with varying complexity

2. picking the ”best one” ex post,

Variable Selection

� = model selection applied to models with different predictor subsets

� for models ŷ that factor through a linear combination of the
predictors,

ŷ(x ; β̂) = f (
M�

m=1

β̂mxm) for a suitable f

� dropping a variable xm from the model is equivalent to
� forcing its model parameter β̂m to be 0.
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Note: “Fitting a model instance” = “Learning model parameters”,
for models having parameters such as linear regression, logistic regression etc.

Machine Learning

Shrinkage

Variable Selection
� . . .

� forcing its model parameter β̂m to be 0.

Shrinkage follows a similar idea:

� smaller parameters mean a simpler hypothesis/less complex model.

� hence, small parameters should be prefered in general.
� a term is added to the objective function to

� favor small parameters or equivalently
� penalize large parameters or
� shrink them towards 0

instead of forcing them to be 0.
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Shrinkage

There are various types of shrinkage techniques for different application
domains.

L1/Lasso Regularization: λ
�M

m=1

���β̂m
��� = λ

���β̂
���
1

L2/Tikhonov Regularization: λ
�M

m=1 β̂
2
m = λ

���β̂
���
2

2

Elastic Net: λ1

���β̂
���
1
+ λ2

���β̂
���
2

2
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Ridge Regression

Ridge regression is a combination of

N�

n=1

(yn − ŷn)
2

� �� �
+λ

M�

m=1

β2
m

� �� �

= L2 loss +λ L2 regularization
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Ridge Regression (Closed Form)
Ridge regression: minimize

RSSλ(β̂) =RSS(β̂) + λ

p�

j=1

β̂2
j = �y − Xβ̂, y − Xβ̂�+ λ

p�

j=1

β̂2
j

⇒ β̂ =
�
XTX+ 2λI

�−1
XTy, I :=




1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1




with λ ≥ 0 a complexity parameter / regularization parameter.

Beware: ridge regression parameter estimates are not equivariant under
scaling of the predictors
� data should be normalized before parameter estimation:

x �n,m :=
xn,m − x̄.,m
σ̂(x.,m)
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Ridge Regression (Gradient Descent)
1 learn-ridgereg-GD(Dtrain := {(x1, y1), . . . , (xN , yN)},α, tmax ∈ N, � ∈ R+):

2 X := (x1, x2, . . . , xN)
T

3 y := (y1, y2, . . . , yN)
T

4 β̂ := 0M
5 � := ||y − X β̂||2
6 for t = 1, . . . , tmax:

7 β̂ := β̂ − α(−2 · XT (y − X β̂)+2λβ̂)

8 �old := �

9 � := ||y − X β̂||2
10 if �− �old < �:

11 return β̂
12 raise exception ”not converged in tmax iterations”

L2-Regularized Update Rule

β̂(t) := (1− 2αλ)� �� �
shrinkage

β̂(t−1) − α
�
−2XT (y − X β̂(t−1))

�
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Tikhonov Regularization Derivation (1/2)
Treat the true parameters θj as random variables Θj with the following
distribution (prior):

Θj ∼ N (0,σΘ), j = 1, . . . , p

Then the joint likelihood of the data and the parameters is

LD,Θ(θ) :=

�
N�

n=1

p(xn, yn | θ)
�

p�

j=1

p(Θj = θj)

and the conditional joint log likelihood of the data and the parameters

log LcondD,Θ (θ) :=

�
N�

n=1

log p(yn | xn, θ)
�

+

p�

j=1

log p(Θj = θj)

and

log p(Θj = θj) = log
1√
2πσΘ

e
−

θ2j

2σ2
Θ = − log(

√
2πσΘ)−

θ2j
2σ2

Θ
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Tikhonov Regularization Derivation (2/2)
Dropping the terms that do not depend on θj yields:

log LcondD,Θ (θ) :=

�
N�

n=1

log p(yn | xn, θ)
�

+

p�

j=1

log p(Θj = θj)

∝
�

N�

n=1

log p(yn | xn, θ)
�

− 1

2σ2
Θ

p�

j=1

θ2j

This also gives a semantics to the complexity / regularization parameter λ:

λ =
1

2σ2
Θ

but σ2
Θ is unknown. (We will see methods to estimate λ soon.)

The parameters θ that maximize the joint likelihood of the data and the
parameters are called Maximum Aposteriori Estimators (MAP
estimators).
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L2-Regularized Logistic Regression (Gradient Descent)

log LcondD (β̂) =
N�

n=1

yn�xn, β̂� − log(1 + e�xn,β̂�)−2λ
P�

j=1

β̂2
j

1: procedure Log-Regr-
GA(LcondD : RP+1 → R, β̂(0) ∈ RP+1,α, tmax ∈ N, � ∈ R+)

2: for t = 1, . . . , tmax do

3: β̂
(t)
0 := β̂

(t−1)
0 + α

�N
n=1

�
yn − p

�
Y = 1|X = xn; β̂

(t−1)
��

4: for j = 1, . . . ,P do

5: β̂
(t)
j :=

β̂
(t−1)
j + α(

�N
n=1 xn,j

�
yn − p

�
Y = 1|X = xi ; β̂

(t−1)
��

−2λβ̂
(t−1)
j )

6: if LcondD (β̂(t−1))− LcondD (β̂(t))) < � then
7: return β̂(t)

8: error ”not converged in tmax iterations”
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L2-Regularized Logistic Regression (Newton)

Newton update rule:

β̂(t) := β̂(t−1) + αH−1∇β̂p
�
Y = 1|X = xi ; β̂

(t−1)
�

pi = p
�
Y = 1|X = xi ; β̂

(t−1)
�

∇β̂L
cond
D =




�N
n=1− (yn − pn)�N

n=1−xn,1 (yn − pn)−2λβ̂1
...�N

n=1−xn,P (yn − pn)−2λβ̂P




H =
N�

n=1

−pn (1− pn) xnx
T
n −2λI
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What is Hyperparameter Optimization?

� Most models and learning algorithms have parameters that cannot be
learned by minimizing the objective function, because either

� the objective function would be minimized for a trivial value, e.g.,
λ = 0, or

� the parameters affect the learning algorithm, e.g., learning rate.

� These parameters are called hyperparameters λ and they
parametrize a learning algorithm Aλ.

� choose suitable hyperparameters λ
� use Aλ to map the training data Dtrain to a prediction function ŷ by

minimizing some loss L(D, ŷ) over the training data.
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What is Hyperparameter Optimization?

� Identifying good values for the hyperparameters λ is called
hyperparameter optimization.

� hyperparameter optimization is a second level optimization

argmin
λ∈Λ

L(Dvalid,Aλ(Dtrain)) = argmin
λ∈Λ

Ψ(λ)

where
� Ψ is the hyperparameter response function and
� Dvalid a validation data

(aka calibration data and holdout data).
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Why Hyperparameter Optimization

� So far only model parameters were optimized.

� Values for hyperparameters (such as regularization λ and
learning rate α) came “out of the blue”.

� Hyperparameters can have a big impact on the prediction quality.
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Grid Search
� Assume we have Q hyperparameters λ1, . . . ,λQ

� Choose for each hyperparameter λq a set of values Λq.
� Λ :=

�Q
q=1 Λq is then a grid of hyperparameters.

� Choose the hyperparameter combination λ ∈ Λ with best performance
on Dvalid.
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Random Search
� Instead of trying hyperparameter combinations on a grid,

try random hyperparameter combinations λ for Λ
(within a reasonable range).

� Usually slightly better results than grid search.
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What is the Validation Data?

� Whenever a learning process depends on a hyperparameter,
the hyperparameter can be estimated by picking the value with the
lowest error.

� If this is done on test data, one actually uses test data in the training
process (“train on test”), thereby lessen its usefulness for estimating
the test error.

� Therefore, one splits the training data again in
� (proper) training data and

� validation data.

� The validation data figures as test data during the training process.
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Cross Validation

Instead of a single split into

training data, (validation data,) and test data

K -fold cross validation splits the data in K parts (of roughly equal size)

D = D1 ∪D2 ∪ · · · ∪DK , Dk pairwise disjoint

and averages performance over K learning problems

D(k)
train := D \ Dk , D(k)

test := Dk k = 1, . . . ,K

Common is 5- and 10-fold cross validation.

N-fold cross validation is also known as leave one out.
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Cross Validation

How many folds to use in K -fold cross validation?

K = N / leave one out:

� approximately unbiased for the true prediction error.

� high variance as the N training sets are very similar.

� in general computationally costly
as N different models have to be learnt.

K = 5:

� lower variance.

� bias could be a problem,
due to smaller training set size the prediction error could
be overestimated.
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Summary
� The problem of underfitting can be overcome by using

more complex models, e.g., having
� variable interactions as in polynomial models.

� The problem of overfitting can be overcome by
� model selection / variable selection as well as by
� (parameter) shrinkage.

� Applying L2-regularization to Linear and Logistic Regression requires
only few changes in the learning algorithm

� Shrinkage introduces a hyperparameter λ that cannot be learned by
direct loss minimization.

� Estimating the best hyperparameters can be considered as a
meta-learning problem. They can be estimated e.g. by

� Grid Search or
� Random Search.

using validation data.
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Further Readings

� [James et al., 2013, chapter 3], [Murphy, 2012, chapter 7], [Hastie
et al., 2005, chapter 3].
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