Machine Learning

A. Supervised Learning: Linear Models \& Fundamentals A.3. Regularization

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Syllabus

Fri. 27.10. (1) 0. Introduction
A. Supervised Learning: Linear Models \& Fundamentals

Fri. 3.11. (2) A. 1 Linear Regression
Fri. 10.11. (3) A. 2 Linear Classification
Fri. 17.11. (4) A. 3 Regularization
Fri. 24.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models

Fri. 1.12.
(6) B. 1 Nearest-Neighbor Models

Fri. 8.12.
(7) B. 2 Neural Networks

Fri. 15.12.
(8) B. 3 Decision Trees

Fri. 12.1.
(9) B. 4 Support Vector Machines

Fri. 19.1. (10) B. 5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning

Fri. 26.1. (11) C. 1 Clustering
Fri. 2.2. (12) C. 2 Dimensionality Reduction
Fri. 9.2. (13) C. 3 Frequent Pattern Mining

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization

Outline

1. The Problem of Overfitting
2. Model Selection
3. Regularization

4. Hyperparameter Optimization

Fitting of models

Linear model (RSS= 11353.52)

Quadratic model (RSS= 10824.72)

Polynomial model (RSS= 7029.37)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Underfitting/Overfitting

Underfitting:

- the model is not complex enough to explain the data well.
- results in poor predictive performance.

Overfitting:

- the model is too complex, it describes the
- noise instead of the
- underlying relationship between target and predictors.
- results in poor predictive performance as well.

Remark: Given N points $\left(x_{n}, y_{n}\right)$ without repeated measurements (i.e. $\left.x_{n} \neq x_{m}, \quad n \neq m\right)$, there exists a polynomial of degree $N-1$ with RSS equal to 0 .

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Losses and Fit Measures

semantics goal	loss the smaller, the better minimize	fit/quality measure the larger, the better maximize
regression	$\begin{aligned} & \operatorname{RSS}(y, \hat{y}) \\ & :=\sum_{n=1}^{N}\left(y_{n}-\hat{y}_{n}\right)^{2} \\ & \operatorname{RMSE}(y, \hat{y}) \\ & :=\left(\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\hat{y}_{n}\right)^{2}\right)^{\frac{1}{2}} \\ & \operatorname{MAE}(y, \hat{y}) \\ & :=\frac{1}{N} \sum_{n=1}^{N}\left\|y_{n}-\hat{y}_{n}\right\| \end{aligned}$	$\begin{aligned} & \log L_{\mathcal{N}}(y, \hat{y}) \\ & :=\sum_{n=1}^{N}-\frac{1}{2 \sigma_{y}^{2}}\left(y_{n}-\hat{y}_{n}\right)^{2} \end{aligned}$
classification	$\begin{aligned} & \operatorname{MR}(y, \hat{y}) \\ & :=\sum_{n=1}^{N} \mathbb{I}\left(y_{n} \neq \hat{y}_{n}\right) \end{aligned}$	$\begin{aligned} & \mathrm{ACC}(y, \hat{y}) \\ & :=\sum_{n=1}^{N} \mathbb{I}\left(y_{n}=\hat{y}_{n}\right) \\ & \log L_{\text {binomial }}(y, \hat{y}) \\ & :=\sum_{n=1}^{N} \pi \mathbb{I}\left(y_{n}=\hat{y}_{n}\right) \\ & \quad+(1-\pi) \mathbb{I}\left(y_{n} \neq \hat{y}_{n}\right) \end{aligned}$

Model Selection Measures

Model selection: given a set of models, e.g.,

$$
Y=\sum_{m=0}^{p-1} \beta_{m} X_{m}
$$

indexed by p (i.e., one model for each value of p), make a choice which model describes the data best.
If we just look at losses / fit measures such as RSS, then the larger p, the better the fit
or equivalently

$$
\text { the larger } p \text {, the lower the loss }
$$

as the model with p parameters can be reparametrized in a model with $p^{\prime}>p$ parameters by setting

$$
\beta_{m}^{\prime}=\left\{\begin{array}{cc}
\beta_{m}, & \text { for } m \leq p \\
0, & \text { for } m>p
\end{array}\right.
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Model Selection Measures

One uses model selection measures of type

$$
\text { model selection measure }=\text { fit }- \text { complexity } \quad(\max !)
$$

or equivalently
model selection measure $=$ loss + complexity $\quad(\min !)$

The smaller the loss ($=$ lack of fit), the better the model.

The smaller the complexity, the simpler and thus better the model.

The model selection measure tries to find a trade-off between fit/loss and complexity.

Model Selection Measures

Akaike Information Criterion (AIC):
(maximize)

$$
\operatorname{AIC}:=\log L-p
$$

or (minimize)

$$
\text { AIC }:=-2 \log L+2 p
$$

Bayes Information Criterion (BIC) /

Bayes-Schwarz Information Criterion: (maximize)

$$
\mathrm{BIC}:=\log L-\frac{p}{2} \log N
$$

where L denotes the likelihood, N the number of samples.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Variable Backward Selection

\{ A, F, H, I, J, L, P \}
AIC $=63.01$

Variable Backward Selection

Variable Backward Selection

```
    {A,F,H,I, J,L, P }
    AIC = 63.01
{X,F,H,I,J,L,P} ... {A,F,H,X,J,L,P } ... {A,F,H,I,J,L, X}
    AIC=63.87 AIC=61.11
    {X,F,H,X,J,L,P} ... {A,F,M,X,J,L,P } ... {A,F,H,X,J,L, 仅}
        AIC=61.88
                        AIC=59.40
        AIC=68.70
```


Variable Backward Selection

$\begin{gathered} \{\mathrm{A}, \mathrm{~F}, \mathrm{H}, \mathrm{I}, \mathrm{~J}, \mathrm{~L}, \mathrm{P}\} \\ \mathrm{AIC}=63.01 \end{gathered}$			
$\begin{gathered} \{X, F, H, I, J, L, P\} \quad \cdots \\ \text { AIC }=63.87 \end{gathered}$	$\begin{gathered} \{A, F, H, X, J, L, P\} \\ \text { AIC }=61.11 \end{gathered}$...	$\begin{gathered} \{\mathrm{A}, \mathrm{~F}, \mathrm{H}, \mathrm{I}, \mathrm{~J}, \mathrm{~L}, \mathrm{X}\} \\ \text { AIC }=70.17 \end{gathered}$
$\begin{gathered} \{X, F, H, X, J, L, P\} \\ \text { AIC }=61.88 \end{gathered}$	$\begin{array}{r} \ldots \mathrm{A}, \mathrm{~F}, \mathrm{M}, \mathrm{X}, \mathrm{~J}, \mathrm{~L}, \mathrm{P}\} \\ \mathrm{AIC}=59.40 \end{array}$	\cdots	$\begin{gathered} \{A, F, H, X, J, L, R, X\} \\ A I C=68.70 \end{gathered}$
$\begin{gathered} \{X, F, X A, X J, L, P\} \\ A I C=63.23 \end{gathered}$	$\begin{gathered} \{A, X, X A, X, J, L, P\} \\ A I C=61.50 \end{gathered}$	-••	$\begin{gathered} \{A, F, M, X, J, L, X, X\} \\ \text { AIC }=66.71 \end{gathered}$

X removed variable

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization

Shrinkage

Model selection operates by

1. fitting model instances for a set of models with varying complexity
2. picking the "best one" ex post,

Variable Selection

- = model selection applied to models with different predictor subsets
- for models \hat{y} that factor through a linear combination of the predictors,

$$
\hat{y}(x ; \hat{\beta})=f\left(\sum_{m=1}^{M} \hat{\beta}_{m} x_{m}\right) \quad \text { for a suitable } f
$$

- dropping a variable x_{m} from the model is equivalent to
- forcing its model parameter $\hat{\beta}_{m}$ to be 0 .

Note: "Fitting a model instance" = "Learning model parameters", for models having parameters such as linear regression, logistic regression etc.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Shrinkage

Variable Selection

- . .
- forcing its model parameter $\hat{\beta}_{m}$ to be 0 .

Shrinkage follows a similar idea:

- smaller parameters mean a simpler hypothesis/less complex model.
- hence, small parameters should be prefered in general.
- a term is added to the objective function to
- favor small parameters or equivalently
- penalize large parameters or
- shrink them towards 0
instead of forcing them to be 0 .

Shrinkage

There are various types of shrinkage techniques for different application domains.

L1/Lasso Regularization: $\lambda \sum_{m=1}^{M}\left|\hat{\beta}_{m}\right|=\lambda\|\hat{\beta}\|_{1}$
L2/Tikhonov Regularization: $\lambda \sum_{m=1}^{M} \hat{\beta}_{m}^{2}=\lambda\|\hat{\beta}\|_{2}^{2}$
Elastic Net: $\lambda_{1}\|\hat{\beta}\|_{1}+\lambda_{2}\|\hat{\beta}\|_{2}^{2}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Ridge Regression

Ridge regression is a combination of

$$
\begin{aligned}
& \underbrace{\sum_{n=1}^{N}\left(y_{n}-\hat{y}_{n}\right)^{2}}+\lambda \underbrace{\sum_{m=1}^{M} \beta_{m}^{2}} \\
& =\mathrm{L} 2 \text { loss } \quad+\lambda \mathrm{L} 2 \text { regularization }
\end{aligned}
$$

Ridge Regression (Closed Form)

Ridge regression: minimize

$$
\begin{aligned}
& \operatorname{RSS}_{\lambda}(\hat{\beta})=\operatorname{RSS}(\hat{\beta})+\lambda \sum_{j=1}^{p} \hat{\beta}_{j}^{2}=\langle\mathbf{y}-\mathbf{X} \hat{\beta}, \mathbf{y}-\mathbf{X} \hat{\beta}\rangle+\lambda \sum_{j=1}^{p} \hat{\beta}_{j}^{2} \\
& \Rightarrow \hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}+2 \lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}, \quad I:=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
\end{aligned}
$$

with $\lambda \geq 0$ a complexity parameter / regularization parameter.
Beware: ridge regression parameter estimates are not equivariant under scaling of the predictors
\rightsquigarrow data should be normalized before parameter estimation:

$$
x_{n, m}^{\prime}:=\frac{x_{n, m}-\bar{x}_{,, m}}{\hat{\sigma}\left(x_{., m}\right)}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Ridge Regression (Gradient Descent)

learn-ridgereg-GD($\left.\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}, \alpha, t_{\text {max }} \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right)$:
$X:=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T}$
$y:=\left(y_{1}, y_{2}, \ldots, y_{N}\right)^{T}$
$\hat{\beta}:=0_{M}$
$\ell:=\|y-X \hat{\beta}\|^{2}$
for $t=1, \ldots, t_{\text {max }}$:
$\hat{\beta}:=\hat{\beta}-\alpha\left(-2 \cdot X^{\top}(y-X \hat{\beta})+2 \lambda \hat{\beta}\right)$
$\ell^{\text {old }}:=\ell$
$\ell:=\|y-X \hat{\beta}\|^{2}$
if $\ell-\ell^{\text {old }}<\epsilon$:
return $\hat{\beta}$
raise exception "not converged in $t_{\text {max }}$ iterations"

L2-Regularized Update Rule

$$
\hat{\beta}^{(t)}:=\underbrace{(1-2 \alpha \lambda)}_{\text {shrinkage }} \hat{\beta}^{(t-1)}-\alpha\left(-2 X^{\top}\left(y-X \hat{\beta}^{(t-1)}\right)\right)
$$

Tikhonov Regularization Derivation (1/2)

Treat the true parameters θ_{j} as random variables Θ_{j} with the following distribution (prior):

$$
\Theta_{j} \sim \mathcal{N}\left(0, \sigma_{\Theta}\right), \quad j=1, \ldots, p
$$

Then the joint likelihood of the data and the parameters is

$$
L_{\mathcal{D}, \Theta}(\theta):=\left(\prod_{n=1}^{N} p\left(x_{n}, y_{n} \mid \theta\right)\right) \prod_{j=1}^{p} p\left(\Theta_{j}=\theta_{j}\right)
$$

and the conditional joint log likelihood of the data and the parameters

$$
\log L_{\mathcal{D}, \Theta}^{\text {cond }}(\theta):=\left(\sum_{n=1}^{N} \log p\left(y_{n} \mid x_{n}, \theta\right)\right)+\sum_{j=1}^{p} \log p\left(\Theta_{j}=\theta_{j}\right)
$$

and

$$
\log p\left(\Theta_{j}=\theta_{j}\right)=\log \frac{1}{\sqrt{2 \pi} \sigma_{\Theta}} e^{-\frac{\theta_{j}^{2}}{2 \sigma_{\Theta}^{2}}}=-\log \left(\sqrt{2 \pi} \sigma_{\Theta}\right)-\frac{\theta_{j}^{2}}{2 \sigma_{\Theta}^{2}}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Tikhonov Regularization Derivation (2/2)

Dropping the terms that do not depend on θ_{j} yields:

$$
\begin{aligned}
\log L_{\mathcal{D}, \Theta}^{\text {cond }}(\theta) & :=\left(\sum_{n=1}^{N} \log p\left(y_{n} \mid x_{n}, \theta\right)\right)+\sum_{j=1}^{p} \log p\left(\Theta_{j}=\theta_{j}\right) \\
& \propto\left(\sum_{n=1}^{N} \log p\left(y_{n} \mid x_{n}, \theta\right)\right)-\frac{1}{2 \sigma_{\Theta}^{2}} \sum_{j=1}^{p} \theta_{j}^{2}
\end{aligned}
$$

This also gives a semantics to the complexity / regularization parameter λ :

$$
\lambda=\frac{1}{2 \sigma_{\Theta}^{2}}
$$

but σ_{Θ}^{2} is unknown. (We will see methods to estimate λ soon.)
The parameters θ that maximize the joint likelihood of the data and the parameters are called Maximum Aposteriori Estimators (MAP estimators).

L2-Regularized Logistic Regression (Gradient Descent)

$$
\log L_{\mathcal{D}}^{\text {cond }}(\hat{\beta})=\sum_{n=1}^{N} y_{n}\left\langle X_{n}, \hat{\beta}\right\rangle-\log \left(1+e^{\left\langle X_{n}, \hat{\beta}\right.}\right)-2 \lambda \sum_{j=1}^{P} \hat{\beta}_{j}^{2}
$$

1: procedure Log-REGR-

$$
\begin{array}{ll}
& \mathrm{GA}\left(L_{\mathcal{D}}^{\text {cond }}: \mathbb{R}^{P+1} \rightarrow \mathbb{R}, \hat{\beta}^{(0)} \in \mathbb{R}^{P+1}, \alpha, t_{\max } \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right) \\
2: & \text { for } t=1, \ldots, t_{\max } \text { do } \\
3: & \hat{\beta}_{0}^{(t)}:=\hat{\beta}_{0}^{(t-1)}+\alpha \sum_{n=1}^{N}\left(y_{n}-p\left(Y=1 \mid X=x_{n} ; \hat{\beta}^{(t-1)}\right)\right) \\
\text { 4: } & \text { for } j=1, \ldots, P \text { do } \\
\text { 5: } & \hat{\beta}_{j}^{(t)}:= \\
& \hat{\beta}_{j}^{(t-1)}+\alpha\left(\sum_{n=1}^{N} x_{n, j}\left(y_{n}-p\left(Y=1 \mid X=x_{i} ; \hat{\beta}^{(t-1)}\right)\right)-2 \lambda \hat{\beta}_{j}^{(t-1)}\right)
\end{array}
$$

$$
3:
$$

4:

6 :
7: \quad return $\hat{\beta}^{(t)}$
8: error " not converged in $t_{\text {max }}$ iterations"

L2-Regularized Logistic Regression (Newton)

Newton update rule:

$$
\begin{gathered}
\hat{\beta}^{(t)}:=\hat{\beta}^{(t-1)}+\alpha H^{-1} \nabla_{\hat{\beta}} p\left(Y=1 \mid X=x_{i} ; \hat{\beta}^{(t-1)}\right) \\
p_{i}=p\left(Y=1 \mid X=x_{i} ; \hat{\beta}^{(t-1)}\right) \\
\nabla_{\hat{\beta}} L_{\mathcal{D}}^{\text {cond }}=\left(\begin{array}{c}
\sum_{n=1}^{N}-\left(y_{n}-p_{n}\right) \\
\sum_{n=1}^{N}-x_{n, 1}\left(y_{n}-p_{n}\right)-2 \lambda \hat{\beta}_{1} \\
\vdots \\
\sum_{n=1}^{N}-x_{n, P}\left(y_{n}-p_{n}\right)-2 \lambda \hat{\beta}_{P}
\end{array}\right) \\
H=\sum_{n=1}^{N}-p_{n}\left(1-p_{n}\right) x_{n} x_{n}^{T}-2 \lambda I
\end{gathered}
$$

Outline

1. The Problem of Overfitting

2. Model Selection
3. Regularization
4. Hyperparameter Optimization

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

What is Hyperparameter Optimization?

- Most models and learning algorithms have parameters that cannot be learned by minimizing the objective function, because either
- the objective function would be minimized for a trivial value, e.g., $\lambda=0$, or
- the parameters affect the learning algorithm, e.g., learning rate.
- These parameters are called hyperparameters λ and they parametrize a learning algorithm \mathcal{A}_{λ}.
- choose suitable hyperparameters λ
- use \mathcal{A}_{λ} to map the training data $\mathcal{D}_{\text {train }}$ to a prediction function \hat{y} by minimizing some loss $\mathcal{L}(\mathcal{D}, \hat{y})$ over the training data.

What is Hyperparameter Optimization?

- Identifying good values for the hyperparameters λ is called hyperparameter optimization.
- hyperparameter optimization is a second level optimization

$$
\underset{\lambda \in \Lambda}{\arg \min } \mathcal{L}\left(\mathcal{D}_{\text {valid }}, \mathcal{A}_{\lambda}\left(\mathcal{D}_{\text {train }}\right)\right)=\underset{\lambda \in \Lambda}{\arg \min } \Psi(\lambda)
$$

where

- Ψ is the hyperparameter response function and
- $\mathcal{D}_{\text {valid }}$ a validation data (aka calibration data and holdout data).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Why Hyperparameter Optimization

- So far only model parameters were optimized.
- Values for hyperparameters (such as regularization λ and learning rate α) came "out of the blue".
- Hyperparameters can have a big impact on the prediction quality.

Grid Search

- Assume we have Q hyperparameters $\lambda_{1}, \ldots, \lambda_{Q}$
- Choose for each hyperparameter λ_{q} a set of values Λ_{q}.
- $\Lambda:=\prod_{q=1}^{Q} \Lambda_{q}$ is then a grid of hyperparameters.
- Choose the hyperparameter combination $\lambda \in \Lambda$ with best performance on $\mathcal{D}_{\text {valid }}$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Random Search

- Instead of trying hyperparameter combinations on a grid, try random hyperparameter combinations λ for Λ (within a reasonable range).
- Usually slightly better results than grid search.

What is the Validation Data?

- Whenever a learning process depends on a hyperparameter, the hyperparameter can be estimated by picking the value with the lowest error.
- If this is done on test data, one actually uses test data in the training process ("train on test"), thereby lessen its usefulness for estimating the test error.
- Therefore, one splits the training data again in
- (proper) training data and
- validation data.
- The validation data figures as test data during the training process.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Machine Learning

Cross Validation

Instead of a single split into
training data, (validation data,) and test data
K-fold cross validation splits the data in K parts (of roughly equal size)

$$
\mathcal{D}=\mathcal{D}_{1} \cup \mathcal{D}_{2} \cup \cdots \cup \mathcal{D}_{K}, \quad \mathcal{D}_{k} \text { pairwise disjoint }
$$

and averages performance over K learning problems

$$
\mathcal{D}_{\text {train }}^{(k)}:=\mathcal{D} \backslash \mathcal{D}_{k}, \quad \mathcal{D}_{\text {test }}^{(k)}:=\mathcal{D}_{k} \quad k=1, \ldots, K
$$

Common is 5 - and 10 -fold cross validation.
N-fold cross validation is also known as leave one out.

Cross Validation

How many folds to use in K-fold cross validation? $K=N /$ leave one out:

- approximately unbiased for the true prediction error.
- high variance as the N training sets are very similar.
- in general computationally costly as N different models have to be learnt.
$K=5:$
- lower variance.
- bias could be a problem, due to smaller training set size the prediction error could be overestimated.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Summary

- The problem of underfitting can be overcome by using more complex models, e.g., having
- variable interactions as in polynomial models.
- The problem of overfitting can be overcome by
- model selection / variable selection as well as by
- (parameter) shrinkage.
- Applying L2-regularization to Linear and Logistic Regression requires only few changes in the learning algorithm
- Shrinkage introduces a hyperparameter λ that cannot be learned by direct loss minimization.
- Estimating the best hyperparameters can be considered as a meta-learning problem. They can be estimated e.g. by
- Grid Search or
- Random Search.

Further Readings

- [James et al., 2013, chapter 3], [Murphy, 2012, chapter 7], [Hastie et al., 2005, chapter 3].

References

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining, Inference and Prediction, volume 27. Springer, 2005.
Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning. Springer, 2013.
Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

