
Machine Learning

Syllabus

Fri. 27.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 3.11. (2) A.1 Linear Regression
Fri. 10.11. (3) A.2 Linear Classification
Fri. 17.11. (4) A.3 Regularization
Fri. 24.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 1.12. (6) B.1 Nearest-Neighbor Models
Fri. 8.12. (7) B.2 Neural Networks
Fri. 15.12. (8) B.3 Decision Trees
Fri. 12.1. (9) B.4 Support Vector Machines
Fri. 19.1. (10) B.5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning
Fri. 26.1. (11) C.1 Clustering
Fri. 2.2. (12) C.2 Dimensionality Reduction
Fri. 9.2. (13) C.3 Frequent Pattern Mining
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Machine Learning

Outline

1. Variable Interactions and Polynomial Models

2. Parameter Variance

3. Variable Selection via Forward and Backward Search

4. Minimizing a Function via Coordinate Descent

5. L1 Regularization / The Lasso
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Machine Learning

High-Dimensional Data

High-dimensional data occurs in different situations:

1. Data that comes naturally with many predictors.
I e.g., text classification

(# predictors = # words in the bag-of-words representation, e.g.,
30.000)

2. Models that extract many predictor variables from objects to classify.
I variable interactions
I derived variables
I complex objects such as graphs, texts, etc.

I Situation 1 often really is a special case of this one.

3. Data with few examples compared to the number of variables
(“small n, large p”).

I gene expression / microarray data
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Machine Learning

Need for higher orders

Assume a target variable does not
depend linearly on a predictor
variable, but say quadratic.

Example: way length vs. duration of
a moving object with constant
acceleration a.

s(t) =
1

2
at2 + ε

Can we catch such a dependency?

Can we catch it with a linear
model?
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Machine Learning

Need for general transformations

To describe many phenomena, even more complex functions of the input
variables are needed.

Example: the number of cells n vs. duration of growth t:

n = βeαt + ε

n does not depend on t directly, but on eαt (with a known α).
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Machine Learning

Need for variable interactions
In a linear model with two predictors

Y = β0 + β1X1 + β2X2 + ε

Y depends on both, X1 and X2.

But changes in X1 will affect Y the same way, regardless of X2.

There are problems where X2 mediates or influences the way X1 affects Y ,
e.g. : the way length s of a moving object vs. its constant velocity v and
duration t:

s = vt + ε

Then an additional 1s duration will increase the way length not in a
uniform way (regardless of the velocity), but a little for small velocities and
a lot for large velocities.

v and t are said to interact: y does not depend only on each predictor
separately, but also on their product.
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Machine Learning

Derived variables
All these cases can be handled by looking at derived variables, i.e., instead of

Y =β0 + β1X
2
1 + ε

Y =β0 + β1e
αX1 + ε

Y =β0 + β1X1 · X2 + ε

one looks at

Y =β0 + β1X
′
1 + ε

with

X ′1 :=X 2
1

X ′1 :=eαX1

X ′1 :=X1 · X2

Derived variables are computed before the fitting process and taken into account
either additional to the original variables or instead of.
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Machine Learning

Polynomial Models
Polynomial models of degree d take into account systematically all
interactions of d different variables (including powers up to degree d):

ŷ(x) :=θ̂0 +
M∑

m=1

θ̂mxm degree 1

ŷ(x) :=θ̂0 +
M∑

m=1

θ̂mxm +
M∑

m=1

M∑

l=m

θ̂m,lxmxl degree 2

ŷ(x) :=θ̂0 +
M∑

m=1

θ̂mxm +
M∑

m=1

M∑

l=m

θ̂m,lxmxl + · · ·

+
M∑

m1=1

M∑

m2=m1

· · ·
M∑

md=md−1

θ̂m1,m2,...,md
xm1xm2 · · · xmd

degree d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 41

Machine Learning

Polynomial Models
Polynomial models of degree d take into account systematically all
interactions of d different variables (including powers up to degree d):
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Machine Learning

High Polynomial Degress, High Model Complexity
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If a model does not well explain the data,
e.g., if the true model is quadratic, but we try to fit a linear model,
one says, the model underfits.
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Machine Learning

High Polynomial Degress, High Model Complexity
If to data

(x1, y1), (x2, y2), . . . , (xN , yN)

consisting of N points we fit

X = β0 + β1X + β2X
2 + · · ·+ βN−1X

N−1

= β0 + β1X1 + β2X2 + · · ·+ βN−1XN−1, Xi := X i

i.e., a polynomial with degree N − 1,
then this results in an interpolation of the data points
(if there are no repeated measurements, i.e., points with the same X .)

As the polynomial

ŷ(X ) =
N∑

n=1

yn
∏

m 6=n

X − xm
xn − xm

is of this type, and has minimal RSS = 0.
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Machine Learning

Variable Types and Coding
The most common variable types:

numerical / interval-scaled / quantitative

I differences and quotients etc. are meaningful,
I usually with domain X := R,
I e.g., temperature, size, weight.

nominal / discrete / categorical / qualitative / factor

I differences and quotients are not defined,
I usually with a finite, enumerated domain,
I e.g., X := {red, green, blue}

or X := {a, b, c, . . . , y, z}.

ordinal / ordered categorical

I levels are ordered, but differences and quotients are not defined,
I usually with a finite, enumerated domain,
I e.g., X := {small,medium, large}
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Machine Learning

Variable Types and Coding
Nominals are usually encoded as a set of binary dummy variables
(aka indicator variables, one hot encoding):

δx0 (X ) :=

{
1, if X = x0,
0, else

one for each x0 ∈ X (but one).

Example: X := {red, green, blue}
one variable X with 3 levels: red, green, blue

↓ replace by

two variables δred(X ) and δgreen(X ) with 2 levels each: 0, 1

X δred(X ) δgreen(X )
red 1 0
green 0 1
blue 0 0
— 1 1
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Outline

1. Variable Interactions and Polynomial Models

2. Parameter Variance

3. Variable Selection via Forward and Backward Search

4. Minimizing a Function via Coordinate Descent

5. L1 Regularization / The Lasso
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Machine Learning

The Normal Distribution (also Gaussian)

written as:

X ∼ N (µ, σ2)

with parameters:
µ mean,
σ standard deviance.

probability density function (pdf):

φ(x) :=
1√
2πσ

e−
(x−µ)2

2σ2

cumulative distribution function
(cdf):

Φ(x) :=

∫ x

−∞
φ(t)dt

Φ−1 is called quantile function.

Φ and Φ−1 have no analytical form,
but have to be computed numerically.
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Machine Learning

The t Distribution

written as:

X ∼ tp

with parameter:
p degrees of freedom.

probability density function (pdf):

p(x) :=
Γ( p+1

2 )
√
p π Γ( p

2 )
(1 +

x2

p
)−

p+1
2

tp
p→∞−→ N (0, 1)
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Machine Learning

The χ2 Distribution

written as:
X ∼ χ2

p

with parameter:
p degrees of freedom.

probability density function (pdf):

p(x) :=
1

Γ(p/2)2p/2
x

p
2−1e−

x
2 , x ≥ 0

If X1, . . . ,Xp ∼ N (0, 1), then

Y :=

p∑

i=1

X 2
i ∼ χ2

p
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Machine Learning

Parameter Variance for Linear Regression

β̂ = (XTX )−1XT y is an unbiased estimator for β (i.e., E(β̂) = β).
Its variance is

V(β̂) = (XTX )−1σ2

proof: assume ground truth Y = Xβ + ε, E(ε) = 0, V(ε) = σ2I :

β̂ =(XTX )−1XT y = (XTX )−1XT (Xβ + ε) = β + (XTX )−1XT ε

 E(β̂) =β + E(ε) = β

V(β̂) =E((β̂ − E(β̂))(β̂ − E(β̂))T )

=E((XTX )−1XT εεTX (XTX )−1)

=(XTX )−1XTE(εεT )X (XTX )−1

=(XTX )−1σ2
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Machine Learning

Parameter Variance for Linear Regression

An unbiased estimator for σ2 is

σ̂2 =
1

N −M

N∑

n=1

ε̂2
n =

1

N −M

N∑

n=1

(yn − ŷn)2

For Gaussian errors ε ∼ N (0, σ2):

β̂ ∼ N (β, (XTX )−1σ2)

and

(N −M)σ̂2 ∼ σ2χ2
N−M
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Machine Learning

Parameter Variance / Standardized coefficient
standardized coefficient (“z-score”):

zn :=
β̂n

ŝe(β̂n)
, with ŝe2(β̂n) the n-th diagonal element of (XTX )−1σ̂2

zn would be zn ∼ N (0, 1) if σ is known (under H0 : βn = 0).
With estimated σ̂ it is zn ∼ tN−M .

The Wald test for H0 : βn = 0 with size α is:

reject H0 if |zn| = | β̂n

ŝe(β̂n)
| > F−1

tN−M
(1− α

2
)

i.e., its p-value is

p-value(H0 : βn = 0) = 2(1− FtN−M
(|zn|)) = 2(1− FtN−M

(| β̂N

ŝe(β̂N)
|))

and small p-values such as 0.01 and 0.05 are good.
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Machine Learning

Confidence interval

The 1− α confidence interval for βn:

βn ± F−1
tN−M

(1− α

2
) ŝe(β̂n)

For large N, FtN−M
converges to the standard normal cdf Φ.

As Φ−1(1− 0.05
2 ) ≈ 1.95996 ≈ 2, the rule-of-thumb for a 5% confidence

interval is
βn ± 2 ŝe(β̂n)
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Example
We have already fitted

ŷ =β̂0 + β̂1x1 + β̂2x2

=5.583 + 0.779x1 − 1.699x2

to the data:

x1 x2 y ŷ ε̂2 = (y − ŷ)2

1 2 3 2.965 0.00122
2 3 2 2.045 0.00207
4 1 7 7.003 0.0000122
5 5 1 0.986 0.000196

RSS 0.00350

σ̂2 =
1

N − P

N∑

n=1

ε̂2
n =

1

4− 3
0.00350 = 0.00350

(XTX )−1σ̂2 =




0.00520 −0.00075 −0.00076
−0.00075 0.00043 −0.00020
−0.00076 −0.00020 0.00049




covariate β̂n ŝe(β̂n) z-score p-value
(intercept) 5.583 0.0721 77.5 0.0082
X1 0.779 0.0207 37.7 0.0169
X2 −1.699 0.0221 −76.8 0.0083
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Machine Learning

Example 2

Example: sociographic data of the 50 US
states in 1977.

state dataset:

I income (per capita, 1974),

I illiteracy (percent of population, 1970),

I life expectancy (in years, 1969–71),

I percent high-school graduates (1970).

I population (July 1, 1975)

I murder rate per 100,000 population
(1976)

I mean number of days with minimum
temperature below freezing (1931–1960)
in capital or large city

I land area in square miles

Income

0.5 1.5 2.5

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●●

●
●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●●

●
●

●

●

●● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

40 50 60

30
00

45
00

60
00

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●
●

●

●

●● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

0.
5

1.
5

2.
5

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

Illiteracy
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
Life Exp

68
70

72

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3000 4500 6000

40
50

60
●

●

●

●

●
●

●
●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

68 70 72

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

HS Grad

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 41

Machine Learning

Example 2

Murder =β0 + β1Population + β2Income + β3Illiteracy

+ β4LifeExp + β5HSGrad + β6Frost + β7Area

N = 50 states, M = 8 parameters, N −M = 42 degrees of freedom.

Least squares estimators:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.222e+02 1.789e+01 6.831 2.54e-08 ***

Population 1.880e-04 6.474e-05 2.905 0.00584 **

Income -1.592e-04 5.725e-04 -0.278 0.78232

Illiteracy 1.373e+00 8.322e-01 1.650 0.10641

‘Life Exp‘ -1.655e+00 2.562e-01 -6.459 8.68e-08 ***

‘HS Grad‘ 3.234e-02 5.725e-02 0.565 0.57519

Frost -1.288e-02 7.392e-03 -1.743 0.08867 .

Area 5.967e-06 3.801e-06 1.570 0.12391
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Machine Learning

Outline

1. Variable Interactions and Polynomial Models

2. Parameter Variance

3. Variable Selection via Forward and Backward Search

4. Minimizing a Function via Coordinate Descent

5. L1 Regularization / The Lasso
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Machine Learning

The Variable Selection Problem

Given a data set Dtrain ⊆ RM × Y,
an error measure err,
a model class with a learning algorithm A,

find the subset V ⊆ {1, 2, . . . ,M} of (relevant) variables s.t. the model

ŷ := A(πV (Dtrain))

learned on this subset V is best, i.e., for new test data Dtest its test error

err(ŷ ,Dtest),

is minimal.

Projection onto predictors V :

πV (x , y) := (xi1 , xi2 , . . . , xiM̃ , y), for V := {i1, i2, . . . , iM̃}
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Greedy Search

I All 2M subsets are too many to test (for larger M).

I Use a simple greedy search.
I forward search:

I start with no variables.
I test adding one more variable not yet in the model.
I add the one leading to lowest validation error.

I backward search:
I start with all variables.
I test removing one more variable still in the model.
I remove the one leading to lowest validation error.

I Does not guarantee to find the best variables subset.
(But usually finds a useful one.)
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Forward Search

1: procedure selectvars-forward(Dtrain′ ⊆ RM × Y, err,A)
2: (Dtrain,Dval) := split(Dtrain′)
3: V := ∅
4: eallbest := err(A(πV (Dtrain)), πV (Dval))
5: vbest := 1
6: while vbest 6= 0 do
7: vbest := 0
8: ebest := eallbest

9: for v ∈ {1, 2, . . . ,M} \ V do
10: V ′ := V ∪ {v}
11: ŷ := A(πV ′ (Dtrain))
12: e := err(ŷ , πV ′ (Dval))
13: if e < ebest then
14: vbest := v
15: ebest := e

16: if ebest < eallbest then
17: V := V ∪ {vbest}
18: eallbest := ebest

19: return V
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Backward Search

1: procedure selectvars-backward(Dtrain′ ⊆ RM × Y, err,A)
2: (Dtrain,Dval) := split(Dtrain′)
3: V := {1, 2, . . . ,M}
4: eallbest := err(A(πV (Dtrain)), πV (Dval))
5: vbest := 1
6: while vbest 6= 0 do
7: vbest := 0
8: ebest := eallbest

9: for v ∈ V do
10: V ′ := V \{v}
11: ŷ := A(πV ′ (Dtrain))
12: e := err(ŷ , πV ′ (Dval))
13: if e < ebest then
14: vbest := v
15: ebest := e

16: if ebest < eallbest then
17: V := V \{vbest}
18: eallbest := ebest

19: return V
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Sequential Search with Variable Importance Heuristics

I Forward and backward search has to learn many models.
I forward search: 1, 2, 3, . . .
I backward search: M, M-1, M-2, . . .

I Further simplification: use a sequential search.
I Use a heuristics to assess variable importance once (without

context)
I e.g., the error of the single-variable model:

imp(m) := err(A(π{m}(Dtrain)),Dval)

I Add variables in order of increasing heuristics.
I Usually a full sequential sweep through all variables is done.

I No difference between Forward and Backward Search.

I Faster, but even less reliable than forward/backward search.
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Sequential Search

1: procedure selectvars-seq(Dtrain′ ⊆ RM × Y, err,A, imp)
2: (Dtrain,Dval) := split(Dtrain′)
3: V := sort-increasing({1, 2, . . . ,M}, imp)
4: V := ∅
5: ebest := err(A(πV (Dtrain)), πV (Dval))
6: mbest := 1
7: for m = 1, . . . ,M do
8: v := Vm
9: V := V ∪ {v}

10: ŷ := A(πV (Dtrain))
11: e := err(ŷ , πV (Dval))
12: if e < ebest then
13: mbest := m
14: ebest := e

15: V := {V1,V2, . . . ,Vmbest}
16: return V
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Outline

1. Variable Interactions and Polynomial Models
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3. Variable Selection via Forward and Backward Search

4. Minimizing a Function via Coordinate Descent
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Minimizing a Function via Coordinate Descent (CD)

Given a function f : RN → R, find x with minimal f (x).

I Use the coordinate axes as descent direction
I first x1-axis, then x2-axis, etc. (cyclic)
I one-dimensional subproblems:

gn(x) := arg min
xn∈R

f (xn; x–n) := arg min
x′∈R

f (x1, x2, . . . , xn−1, x
′, xn+1, . . . , xN)

I Coordinate Descent can be fast if solving the one-dimensional
subproblems can be done analytically.

I For smooth f , one needs to solve

∂f (xn; x−n)

∂xn

!
= 0

I Then also no step length is required !
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Note: x−n := (x1, . . . , x2, . . . , xn−1, xn+1, . . . , xN) is the vector without element n for a
vector x ∈ RN .

Machine Learning

Coordinate Descent
1: procedure

minimize-CD(f : RN → R, g , x (0) ∈ RN , imax ∈ N, ε ∈ R+)
2: for i := 1, . . . , imax do
3: x (i) := x (i−1)

4: for n := 1, . . . ,N do

5: x
(i)
n := gn(x

(i)
−n)

6: if f (x (i−1))− f (x (i)) < ε then
7: return x (i)

8: error ”not converged in imax iterations”

with

g : solvers gn for the n-th one-dimensional subproblem
gn(x1, x2, . . . , xn−1, xn+1, . . . , xN) := arg min

x ′∈R
f (x1, . . . , xn−1, x

′, xn+1, . . . , xN)
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Example: Simple Quadratic Function
Minimize

f (x1, x2) := x2
1 + x2

2 + x1x2

One dimensional problem for x1:

f (x1; x2) =x2
1 + x2

2 + x1x2

∂f

∂x1
(x1; x2) =2x1 + x2

!
= 0

 x1 = −1

2
x2

i.e., g1(x2) := −1

2
x2

and analogous for x2:

g2(x1) := −1

2
x1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Example: Simple Quadratic Function

Minimize

f (x1, x2) := x2
1 + x2

2 + x1x2, x (0) := (1, 1)

g1(x2) := −1

2
x2, g2(x1) := −1

2
x1

i x (i) before n gn(x (i)) x (i) after

1 (1, 1) 1 −1/2 (−1/2, 1)
(−1/2, 1) 2 1/4 (−1/2, 1/4)

2 (−1/2, 1/4) 1 −1/8 (−1/8, 1/4)
(−1/8, 1/4) 2 1/16 (−1/8, 1/16)

...
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Note: Minimize f (x1, x2) := x2
1 + x2

2 via CD yourself. What is different? Why?
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Learn Linear Regression via CD

Minimize

f (β̂) := ||y − X β̂||2 ∝ β̂TXTX β̂ − 2yTX β̂

f (β̂m; β̂−m) = xTm xmβ̂
2
m + 2β̂T−mX

T
−mxmβ̂m + β̂T−mX

T
−mX−mβ̂−m

− 2yT xmβ̂m − 2yTX−mβ̂−m

∝ xTm xmβ̂
2
m − 2(y − X−mβ̂−m)T xmβ̂m

∂f (β̂m; β̂−m)

∂β̂m

!
= 0 β̂m =

(y − X−mβ̂−m)T xm
xTm xm
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Note: xm := X.,m denotes the m-th column of X ,
X−m denotes the matrix X without column m.

Machine Learning

Learn Linear Regression via CD

1: procedure learn-linreg-
CD(Dtrain := {(x1, y1), . . . , (xN , yN)}, imax ∈ N, ε ∈ R+)

2: X := (x1, x2, . . . , xN)T

3: y := (y1, y2, . . . , yN)T

4: β̂0 := (0, . . . , 0)
5: β̂ := minimize-CD( f (β̂) := (y − X β̂)T (y − X β̂),

g(β̂m; β̂−m) := (y−X−mβ̂−m)T xm
xTm xm

β̂0, α, imax, ε)

6: return β̂
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Note: xm := X.,m denotes the m-th column of X ,
X−m denotes the matrix X without column m.
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Outline
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Machine Learning

L1 Regularization
Let X the predictor matrix and y the target vector,

θ̂ the model parameters,
ŷ the model predictions and
` the loss/error.

L2 regularization:

f (θ̂) := `(y , ŷ(θ̂,X )) + λ||θ̂||22 = . . .+ λ

P∑

p=1

θ̂2
p

L1 regularization:

f (θ̂) := `(y , ŷ(θ̂,X )) + λ||θ̂||1 = . . .+ λ

P∑

p=1

|θ̂p|
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Why L1 Regularization?

min. f (θ̂) := `(y , ŷ(θ̂,X )) +λ||θ̂||1
θ̂ ∈ RP

is equivalent to

min. f (θ̂) := `(y , ŷ(θ̂,X ))

||θ̂||1 ≤ B

θ̂ ∈ RP

with

B := ||θ̂∗||1

min. f (θ̂) := `(y , ŷ(θ̂,X )) +λ||θ̂||22
θ̂ ∈ RP

is equivalent to

min. f (θ̂) := `(y , ŷ(θ̂,X ))

||θ̂||22 ≤ B

θ̂ ∈ RP

with

B := ||θ̂∗||22
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Note: θ̂∗ denotes the optimal parameters. Thus this equivalence provides insight, but
cannot (yet) be used to solve the problem.
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Note: θ̂∗ denotes the optimal parameters. Thus this equivalence provides insight, but
cannot (yet) be used to solve the problem.
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Why L1 Regularization?

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

β^ β^2
. .β

1

β 2

β1
β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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source: [Hastie et al., 2005, p. 90]

Machine Learning

Regularized Linear Regression

Let X the predictor matrix and y the target vector,
β̂ the linear regression model parameters,
ŷ := X β̂ the linear regression model predictions and
`(y , ŷ) := ||y − ŷ ||22 the RSS loss/error.

L2 Regularized Linear Regression (Ridge Regression):

f (β̂) := `(y , ŷ(β̂,X )) + λ||β̂||22
∝ β̂TXTX β̂ − 2yTX β̂ + λβ̂T β̂

= β̂T (XTX + λI )β̂ − 2yTX β̂

I L2 regularized problem has same structure as unregularized one.

I All learning algorithms work seamlessly.
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Regularized Linear Regression
Let X the predictor matrix and y the target vector,

β̂ the linear regression model parameters,
ŷ := X β̂ the linear regression model predictions and
`(y , ŷ) := ||y − ŷ ||22 the RSS loss/error.

L1 regularized Linear Regression (Lasso):

f (β) := `(y , ŷ) + λ||β||1

∝ β̂TXTX β̂ − 2yTX β̂ + λ

M∑

m=1

|βm|

I L1 regularized problem has new terms |βm|.
I Esp. non-differentiable at 0.

I All learning algorithms seen so far do not work.
I Solving SLE is not applicable.
I Gradient Descent does not work.
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Hard & Soft Thresholding

xε−ε

f (x)

hard(x , ε) :=

{
x , if |x | > ε

0, else

xε−ε

f (x)

soft(x , ε) :=





x − ε, if x > ε

0, if |x | ≤ ε
x + ε, if x < −ε
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Coordinate Descent for L1 Regularized Linear Regression

f (β̂) := β̂TXTX β̂ − 2yTX β̂ +λ
M∑

m=1

|βm|

f (β̂m; β̂−m) ∝ xTm xmβ̂
2
m − 2(y − X−mβ̂−m)T xmβ̂m +λ|βm|

∂f (β̂m; β̂−m)

∂β̂m

!
= 0 β̂m =





(y−X−mβ̂−m)T xm − 1
2
λ

xTm xm
, β̂m > 0

(y−X−mβ̂−m)T xm + 1
2
λ

xTm xm
, β̂m < 0

 β̂m = soft(
(y − X−mβ̂−m)T xm

xTm xm
,

1
2λ

xTm xm
)
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Note: LASSO = Least Absolute Selection and Shrinkage Operator.

Machine Learning

Learn L1-regularized Linear Regression via CD (Shooting
Algorithm)

1: procedure learn-linreg-l1reg-
CD(Dtrain := {(x1, y1), . . . , (xN , yN)}, λ ∈ R+, imax ∈ N, ε ∈ R+)

2: X := (x1, x2, . . . , xN)T

3: y := (y1, y2, . . . , yN)T

4: β̂0 := (0, . . . , 0)
5: β̂ := minimize-CD( f (β̂) := (y − X β̂)T (y − X β̂) + λ||β||1,

g(β̂m; β̂−m) := soft( (y−X−mβ̂−m)T xm
xTm xm

,
1
2
λ

xTm xm
),

β̂0, α, imax, ε)

6: return β̂
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Note: xm := X.,m denotes the m-th column of X ,
X−m denotes the matrix X without column m.
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Regularization Paths

L2 regularization
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L1 regularization

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

x-axis: bound B on parameter size.
y-axis: parameter θ̂.
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source: [Murphy, 2012, p. 437]

Machine Learning

Summary
I High-dimensional data poses problems as many parameters have to

be estimated from comparable few instances.

I Non-linear effects can be captured by derived predictor variables.
I e.g., in polynomial models.
I making even originally low-dimensional data high-dimensional.

I Relevant variables can be searched explicitly through a greedy
forward search and backward search.

I To minimize a function, coordinate descent cyclicly chooses the
coordinate axes as descent direction.

I efficient, if the one-dimensional subproblems can be solved
analytically.

I does need no step length.

I Variable selection also can be accomplished by L1 regularization.
I L1 regularized linear regression (LASSO) can be learned by

coordinate descent (shooting algorithm).
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Further Readings

I [James et al., 2013, chapter 6], [Murphy, 2012, chapter 13], [Hastie
et al., 2005, chapter 3.3–8].
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