Syllabus

Fri. 27.10. (1) 0. Introduction
A. Supervised Learning: Linear Models \& Fundamentals

Fri. 3.11. (2) A. 1 Linear Regression
Fri. 10.11. (3) A. 2 Linear Classification
Fri. 17.11. (4) A. 3 Regularization
Fri. 24.11. (5) A. 4 High-dimensional Data
B. Supervised Learning: Nonlinear Models

Fri. 1.12. (6) B. 1 Nearest-Neighbor Models
Fri. 8.12. (7) B. 4 Support Vector Machines
Fri. 15.12. (8) B. 3 Decision Trees
Fri. 22.12. (9) B. 2 Neural Networks

- Christmas Break -

Fri. 12.1. (10) B. 5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning

Fri. 19.1. (11) C. 1 Clustering
Fri. 26.1. (12) C. 2 Dimensionality Reduction
Fri. 2.2. (13) C. 3 Frequent Pattern Mining
Fri. 9.2. (14) Q\&A
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Separating Hyperplanes
2. Perceptron
3. Maximum Margin Separating Hyperplanes
4. Learning SVMs
5. Non-separable Problems
6. Support Vectors and Kernels

Outline

1. Separating Hyperplanes

2. Perceptron

3. Maximum Margin Separating Hyperplanes
4. Learning SVMs

5. Non-separable Problems

6. Support Vectors and Kernels

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Separating Hyperplanes

Logistic Regression \& Linear Discriminant Analysis (LDA):

Separating Hyperplanes

Logistic Regression \& Linear Discriminant Analysis (LDA):

linear decision boundary $=$ separating hyperplane

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Hyperplanes

Hyperplanes can be modeled explicitly as

$$
H_{\beta, \beta_{0}}:=\left\{x \mid\langle\beta, x\rangle=-\beta_{0}\right\}, \quad \beta=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{p}
\end{array}\right) \in \mathbb{R}^{p}, \beta_{0} \in \mathbb{R}
$$

We will write H_{β} shortly for $H_{\beta, \beta_{0}}$ (although β_{0} is very relevant!).
For any two points $x, x^{\prime} \in H_{\beta}$ we have

$$
\left\langle\beta, x-x^{\prime}\right\rangle=\langle\beta, x\rangle-\left\langle\beta, x^{\prime}\right\rangle=-\beta_{0}+\beta_{0}=0
$$

thus β is orthogonal to all translation vectors in H_{β}, and thus $\beta /\|\beta\|$ is the normal vector of H_{β}.

Hyperplanes

The projection of a point $x \in \mathbb{R}^{p}$ onto H_{β}, i.e., the closest point on H_{β} to x is given by

$$
\pi_{H_{\beta}}(x):=x-\frac{\langle\beta, x\rangle+\beta_{0}}{\langle\beta, \beta\rangle} \beta
$$

Proof:
(i) $\pi x:=\pi_{H_{\beta}}(x) \in H_{\beta}:$

$$
\begin{aligned}
\left\langle\beta, \pi_{H_{\beta}}(x)\right\rangle & =\left\langle\beta, x-\frac{\langle\beta, x\rangle+\beta_{0}}{\langle\beta, \beta\rangle} \beta\right\rangle \\
& =\langle\beta, x\rangle-\frac{\langle\beta, x\rangle+\beta_{0}}{\langle\beta, \beta\rangle}\langle\beta, \beta\rangle=-\beta_{0}
\end{aligned}
$$

(ii) $\pi_{H_{\beta}}(x)$ is the closest such point to x :

For any other point $x^{\prime} \in H_{\beta}$:

$$
\begin{aligned}
\left\|x-x^{\prime}\right\|^{2} & =\left\langle x-x^{\prime}, x-x^{\prime}\right\rangle=\left\langle x-\pi x+\pi x-x^{\prime}, x-\pi x+\pi x-x^{\prime}\right\rangle \\
& =\langle x-\pi x, x-\pi x\rangle+2\left\langle x-\pi x, \pi x-x^{\prime}\right\rangle+\left\langle\pi x-x^{\prime}, \pi x-x^{\prime}\right\rangle \\
& =\|x-\pi x\|^{2}+0+\left\|\pi x-x^{\prime}\right\|^{2}
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Hyperplanes

The signed distance of a point $x \in \mathbb{R}^{p}$ to H_{β} is given by

$$
\frac{\langle\beta, x\rangle+\beta_{0}}{\|\beta\|}
$$

Proof:

$$
x-\pi x=\frac{\langle\beta, x\rangle-\beta_{0}}{\langle\beta, \beta\rangle} \beta
$$

Therefore

$$
\begin{aligned}
\|x-\pi x\|^{2} & =\left\langle\frac{\langle\beta, x\rangle+\beta_{0}}{\langle\beta, \beta\rangle} \beta, \frac{\langle\beta, x\rangle+\beta_{0}}{\langle\beta, \beta\rangle} \beta\right\rangle \\
& =\left(\frac{\langle\beta, x\rangle+\beta_{0}}{\langle\beta, \beta\rangle}\right)^{2}\langle\beta, \beta\rangle \\
\|x-\pi x\| & =\left|\frac{\langle\beta, x\rangle+\beta_{0}}{\|\beta\|}\right|
\end{aligned}
$$

Separating Hyperplanes

For given data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

with a binary class label $Y \in\{-1,+1\}$
a hyperplane H_{β} is called separating if

$$
y_{i} h\left(x_{i}\right)>0, \quad i=1, \ldots, n, \quad \text { with } h(x):=\langle\beta, x\rangle+\beta_{0}
$$

Linear Separable Data

The data is called linear separable if there exists such a separating hyperplane.

In general, if there is one, there are many.
If there is a choice, we need a criterion to narrow down which one we want / is the best.

Outline

1. Separating Hyperplanes

2. Perceptron

3. Maximum Margin Separating Hyperplanes

4. Learning SVMs

5. Non-separable Problems

6. Support Vectors and Kernels

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Perceptron as Linear Model

Perceptron is another name for a linear binary classification model (Rosenblatt 1958):

$$
\begin{aligned}
& Y(X)=\operatorname{sign} h(X), \quad \text { with } \operatorname{sign} x=\left\{\begin{aligned}
+1, & x>0 \\
0, & x=0 \\
-1, & x<0
\end{aligned}\right. \\
& h(X)=\beta_{0}+\langle\beta, X\rangle+\epsilon
\end{aligned}
$$

that is very similar to the logistic regression model

$$
\begin{aligned}
& \quad Y(X)=\underset{y}{\arg \max p(Y=y \mid X)=\operatorname{sign} p(Y=y \mid X)-0.5} \\
& p(Y=+1 \mid X)=\operatorname{logistic}(\langle\beta, X\rangle)+\epsilon \\
& p(Y=-1 \mid X)=1-p(Y=+1 \mid X)
\end{aligned}
$$

as well as to linear discriminant analysis (LDA).

Perceptron as Linear Model

The perceptron does just provide class labels $\hat{y}(x)$ and unscaled certainty factors $\hat{h}(x)$, but no class probabilities $\hat{p}(Y \mid X)$.

Therefore, probabilistic fit/error criteria such as maximum likelihood cannot be applied.

For perceptrons, the sum of the certainty factors of misclassified points is used as error criterion:

$$
q\left(\beta, \beta_{0}\right):=\sum_{i=1: \hat{y}_{i} \neq y_{i}}^{n}\left|h_{\beta}\left(x_{i}\right)\right|=-\sum_{i=1: \hat{y}_{i} \neq y_{i}}^{n} y_{i} h_{\beta}\left(x_{i}\right)
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Perceptron as Linear Model

For learning, gradient descent is used:

$$
\begin{aligned}
& \frac{\partial q\left(\beta, \beta_{0}\right)}{\partial \beta}=-\sum_{i=1: \hat{y}_{i} \neq y_{i}}^{n} y_{i} x_{i} \\
& \frac{\partial q\left(\beta, \beta_{0}\right)}{\partial \beta_{0}}=-\sum_{i=1: \hat{y}_{i} \neq y_{i}}^{n} y_{i}
\end{aligned}
$$

Instead of looking at all points at the same time, stochastic gradient descent is applied where all points are looked at sequentially (in a random sequence).
The update for a single point $\left(x_{i}, y_{i}\right)$ then is

$$
\begin{aligned}
& \hat{\beta}^{(k+1)}:=\hat{\beta}^{(k)}+\alpha y_{i} x_{i} \\
& \hat{\beta}_{0}^{(k+1)}:=\hat{\beta}_{0}^{(k)}+\alpha y_{i}
\end{aligned}
$$

with a step length α (often called learning rate).

Perceptron Learning Algorithm

```
learn-perceptron(training data \(X\), step length \(\alpha\) ) :
    \(\hat{\beta}:=\) a random vector
    \(\hat{\beta}_{0}:=\) a random value
    do
        errors :=0
        \(\underline{\text { for }}(x, y) \in X\) (in random order) \(\underline{\text { do }}\)
            if \(y\left(\hat{\beta}_{0}+\langle\hat{\beta}, x\rangle\right) \leq 0\)
                errors \(:=\) errors +1
                \(\hat{\beta}:=\hat{\beta}+\alpha y x\)
                \(\hat{\beta}_{0}:=\hat{\beta}_{0}+\alpha y\)
            fi
        od
    while errors \(>0\)
    return \(\left(\hat{\beta}, \hat{\beta}_{0}\right)\)
```

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Perceptron Learning Algorithm: Properties

For linear separable data the perceptron learning algorithm can be shown to converge: it finds a separating hyperplane in a finite number of steps.

But there are many problems with this simple algorithm:

- If there are several separating hyperplanes, there is no control about which one is found (it depends on the starting values).
- If the gap between the classes is narrow, it may take many steps until convergence.
- If the data are not separable, the learning algorithm does not converge at all.

Outline

1. Separating Hyperplanes

2. Perceptron
3. Maximum Margin Separating Hyperplanes
4. Learning SVMs
5. Non-separable Problems
6. Support Vectors and Kernels

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Maximum Margin Separating Hyperplanes

Many of the problems of perceptrons can be overcome by designing a better fit/error criterion.

Maximum Margin Separating Hyperplanes use the width of the margin, i.e., the distance of the closest points to the hyperplane as criterion:

$$
\begin{gathered}
\text { maximize } C \\
\text { w.r.t. } y_{i} \frac{\beta_{0}+\left\langle\beta, x_{i}\right\rangle}{\|\beta\|} \geq C, \quad i=1, \ldots, n \\
\beta \in \mathbb{R}^{p} \\
\beta_{0} \in \mathbb{R}
\end{gathered}
$$

Maximum Margin Separating Hyperplanes

As for any solutions β, β_{0} also all positive scalar multiples fullfil the equations, we can arbitrarily set

$$
\|\beta\|=\frac{1}{C}
$$

Then the problem can be reformulated as

$$
\begin{aligned}
& \text { minimize } \frac{1}{2}\|\beta\|^{2} \\
& \text { w.r.t. } y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right) \geq 1, \quad i=1, \ldots, n \\
& \beta \in \mathbb{R}^{p} \\
& \beta_{0} \in \mathbb{R}
\end{aligned}
$$

This problem is a convex optimization problem (quadratic target function with linear inequality constraints).
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Quadratic Optimization

To get rid of the linear inequality constraints, one usually applies Lagrange multipliers.
The Lagrange (primal) function of this problem is

$$
\begin{aligned}
& \qquad L:=\frac{1}{2}\|\beta\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)-1\right) \\
& \text { w.r.t. } \alpha_{i}
\end{aligned}
$$

For an extremum it is required that
and

$$
\begin{aligned}
\frac{\partial L}{\partial \beta} & =\beta-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \stackrel{!}{=} 0 \\
\Rightarrow \beta & =\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
\end{aligned}
$$

$$
\frac{\partial L}{\partial \beta_{0}}=-\sum_{i=1}^{n} \alpha_{i} y_{i} \stackrel{!}{=} 0
$$

Quadratic Optimization

Input

$$
\beta=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

into

$$
L:=\frac{1}{2}\|\beta\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)-1\right)
$$

yields the dual problem

$$
\begin{aligned}
& L=\frac{1}{2}\left\langle\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}\right\rangle-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}, x_{i}\right\rangle\right)-1\right) \\
&=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i}-\sum_{i=1}^{n} \alpha_{i} y_{i} \beta_{0}-\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \\
&=-\frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i} \\
& \text { Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany }
\end{aligned}
$$

Machine Learning

Quadratic Optimization

The dual problem is

$$
\begin{aligned}
& \text { maximize } L(\alpha)=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i} \\
& \text { w.r.t. } \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \qquad \alpha_{i} \geq 0
\end{aligned}
$$

with much simpler constraints.

Outline

1. Separating Hyperplanes

2. Perceptron

3. Maximum Margin Separating Hyperplanes
4. Learning SVMs
5. Non-separable Problems
6. Support Vectors and Kernels

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Minimize a Quadratic Function with Linear Equality and Inequality Constraints

$$
\begin{aligned}
\operatorname{minimize} f(x) & :=x^{T} C x-c^{T} x \\
\text { w.r.t. } A x-a & =0 \\
B x-b & \leq 0 \\
x & \in \mathbb{R}^{N}
\end{aligned}
$$

where

$$
\begin{aligned}
& C \in \mathbb{R}^{N \times N}, c \in \mathbb{R}^{N} \\
& A \in \mathbb{R}^{M \times N}, a \in \mathbb{R}^{M} \quad M \text { equality constraints } \\
& B \in \mathbb{R}^{K \times N}, b \in \mathbb{R}^{K} \quad K \text { inequality constraints }
\end{aligned}
$$

Note: Each equality constraint can also be represented as two inequality constraints.

Submanifold Minimization Algorithm

procedure minimize-INEQ-CSTR-
$\operatorname{SUbMANifold}\left(C \in \mathbb{R}^{N \times N}, c \in \mathbb{R}^{N}, A \in \mathbb{R}^{M \times N}, a \in \mathbb{R}^{M}, B \in \mathbb{R}^{K \times N}, b \in \mathbb{R}^{K}, x \in \mathbb{R}^{N}\right)$
2: $\quad K_{0}:=\left\{k \in\{1, \ldots, K\} \mid(B x-b)_{k}=0\right\}$
3: while true do
4: \quad while true do
5:

6 :

$$
\left(x^{*}, \nu^{*}\right):=\operatorname{solve}\left(\left(\begin{array}{cc}
C & \tilde{A}^{T} \\
\tilde{A} & 0
\end{array}\right)\binom{x}{\nu}=\binom{c}{\tilde{a}}\right)
$$

if $f\left(x^{*}\right) \geq f(x)$ then
break
$\alpha:=\max \left\{\alpha \in[0,1] \mid B\left(x+\alpha\left(x^{*}-x\right)-b \leq 0\right\}\right.$
$x:=x+\alpha\left(x^{*}-x\right)$
10:
11:
$K_{0}:=\left\{k \in\{1, \ldots, K\} \mid(B x-b)_{k}=0\right\}$
12:
13:
if $v^{*} \geq 0$ then

break

choose $k \in K_{0}: v_{k}^{*}<0$
14:

$$
K_{0}:=K_{0} \backslash\{k\}
$$

16: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

The dual problem for the maximum margin separating hyperplane is such a . constrained quadratic optimization problem:

$$
\begin{aligned}
\operatorname{maximize} L & =-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i} \\
\text { w.r.t. } \sum_{i=1}^{n} \alpha_{i} y_{i} & =0 \\
\alpha_{i} & \geq 0
\end{aligned}
$$

Set $f:=-L$
$C_{i, j}:=y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle$

$$
c_{i}:=1
$$

$$
x_{i}:=\alpha_{i}
$$

$$
A:=\left(y_{1}, y_{2}, \ldots, y_{N}\right), \quad a=(0)
$$

$B_{i, .}:=(0,0, \ldots, 0,-1,0, \ldots, 0) \quad$ (with the -1 at column $\left.i\right), i=1, \ldots, n$ $b_{i}:=0$

Learning SVMs by Submanifold Minimization

1: procedure LEARN-SVM $\left(\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}\right)$
2: $\quad C:=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m}\left\langle x_{n}, x_{m}\right\rangle$
3: $\quad c:=(1,1, \ldots, 1)$
4: $\quad A:=\left(y_{1}, y_{2}, \ldots, y_{N}\right), a:=(0)$
5: $\quad B:=-l, b:=(0,0, \ldots, 0)$
6: $\quad N^{+}:=\left|\left\{n \in\{1, \ldots, N\} \mid y_{n}=+1\right\}\right|, N^{-}:=N-N^{+}$
7: $\quad \alpha_{n}:= \begin{cases}\frac{1}{N^{+}} & , \text {if } y_{n}=+1 \\ \frac{1}{N^{-}} & , \text {else }\end{cases}$
8: $\quad \alpha:=$ MINIMIZE-CSTR-INEQ $(C, c, A, a, B, b, \alpha)$
9: $\quad \beta:=\sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}$
10: $\quad N^{S}:=\left|\left\{n \in\{1, \ldots, N\} \mid \alpha_{n}>0\right\}\right|$
11: $\quad \beta_{0}:=\frac{1}{N^{S}} \sum_{n=1, \alpha_{n}>0}^{N} y_{n}-\beta^{T} x_{n}$
12: return $\left(\beta_{0}, \beta\right)$
Note: I is the identity matrix.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Example

Find a maximum margin separating hyperplane for the following data:

x_{1}	x_{2}	y
1	1	-1
3	3	+1
4	3	+1

Example

$$
\begin{aligned}
& C=\left(y_{i} y_{j}\left\langle x_{i}, x_{y}\right\rangle\right)_{i, j}=\left(\begin{array}{rrr}
2 & -6 & -7 \\
-6 & 18 & 21 \\
-7 & 21 & 25
\end{array}\right), \quad c=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \\
& A=\left(\begin{array}{lll}
-1 & 1 & 1
\end{array}\right), \quad a=(0) \\
& B=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad b=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

As the equality constraint $A \alpha=a$ always needs to be met, it can be added to C :

$$
C^{\prime}=\left(\begin{array}{rr}
C & y \\
y^{\top} & 0
\end{array}\right), \quad=\left(\begin{array}{rrrr}
2 & -6 & -7 & -1 \\
-6 & 18 & 21 & 1 \\
-7 & 21 & 25 & 1 \\
-1 & 1 & 1 & 0
\end{array}\right),
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Example

Let us start with a random

$$
x=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

that meets both constraints:

$$
\begin{aligned}
& A x-a=\langle y, x\rangle=-2+1+1=0 \\
& B x-b=\left(\begin{array}{l}
-2 \\
-1 \\
-1
\end{array}\right) \leq 0
\end{aligned}
$$

As none of the inequality constaints is active: $I_{0}(x)=\emptyset$.
Step 1: We have to solve

$$
C^{\prime}\binom{x}{\mu}=\binom{c}{0}
$$

Example

This yields

$$
x^{*}=\left(\begin{array}{r}
0.5 \\
1.5 \\
-1.0
\end{array}\right)
$$

which does not fulfill the (inactive) inequality constraint $x_{3} \geq 0$.
So we look for

$$
x+\alpha\left(x^{*}-x\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)+\alpha\left(\begin{array}{c}
-1.5 \\
0.5 \\
-2
\end{array}\right) \geq 0
$$

that fulfills all inequality constraints and has large step size α. Obviously, $\alpha=0.5$ is best and yields

$$
x:=x+\alpha\left(x^{*}-x\right)=\left(\begin{array}{l}
1.25 \\
1.25 \\
0
\end{array}\right)
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Example

Step 2: Now the third inequality constraint is active: $I_{0}(x)=\{3\}$.

$$
C^{\prime \prime}=\left(\begin{array}{rrr}
C^{\prime} & y & -e_{3} \\
y^{T} & 0 & 0 \\
-e_{3}^{T} & 0 & 0
\end{array}\right), \quad=\left(\begin{array}{rrrrr}
2 & -6 & -7 & -1 & 0 \\
-6 & 18 & 21 & 1 & 0 \\
-7 & 21 & 25 & 1 & -1 \\
-1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0
\end{array}\right)
$$

and we have to solve

$$
C^{\prime \prime}\left(\begin{array}{c}
x \\
\mu \\
\nu^{*}
\end{array}\right)=\left(\begin{array}{l}
c \\
0 \\
0
\end{array}\right)
$$

which yields

$$
x^{*}=\left(\begin{array}{l}
0.25 \\
0.25 \\
0
\end{array}\right), \quad \nu^{*}=0.5
$$

Example

As x^{*} fulfills all constraints, it becomes the next x (step size $\alpha=1$):

$$
x:=x^{*}
$$

As the lagrange multiplier $\nu^{*} \geq 0$, the algorithm stops:
x is optimal.
So we found the optimal

$$
\alpha=\left(\begin{array}{l}
0.25 \\
0.25 \\
0
\end{array}\right) \quad \text { (called } x \text { in the algorithm!) }
$$

and can compute

$$
\beta=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=0.25 \cdot(-1) \cdot\binom{1}{1}+0.25 \cdot(+1) \cdot\binom{3}{3}=\binom{0.5}{0.5}
$$

β_{0} can be computed from the original constraints of the points with $\alpha_{i}>0$ which have to be sharp, i.e.,

$$
y_{1}\left(\beta_{0}+\left\langle\beta, x_{1}\right\rangle\right)=1 \Rightarrow \beta_{0}=y_{1}-\left\langle\beta, x_{1}\right\rangle=-1-\left\langle\binom{ 0.5}{0.5},\binom{1}{1}\right\rangle=-2
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Separating Hyperplanes

2. Perceptron

3. Maximum Margin Separating Hyperplanes
4. Learning SVMs
5. Non-separable Problems
6. Support Vectors and Kernels

Optimal Hyperplane

Inseparable problems can be modeled by allowing some points to be on the wrong side of the hyperplane.
Hyperplanes are better if
(i) the fewer points are on the wrong side and
(ii) the closer these points are to the hyperplane (modeled by slack variables ξ_{i}).

$$
\operatorname{minimize} \frac{1}{2}\|\beta\|^{2}+\gamma \sum_{i=1}^{n} \xi_{i}
$$

w.r.t. $y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right) \geq 1-\xi_{i}, \quad i=1, \ldots, n$
$\xi \geq 0$
$\beta \in \mathbb{R}^{p}$
$\beta_{0} \in \mathbb{R}$
This problem also is a convex optimization problem (quadratic target function with linear inequality constraints).
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Dual Problem

Compute again the dual problem:

$$
L:=\frac{1}{2}\|\beta\|^{2}+\gamma \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)-\left(1-\xi_{i}\right)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}
$$

w.r.t. $\alpha_{i} \geq 0$

$$
\mu_{i} \geq 0
$$

For an extremum it is required that
and

$$
\frac{\partial L}{\partial \beta}=\beta-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \stackrel{!}{=} 0
$$

$$
\Rightarrow \beta=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
$$

and

$$
\frac{\partial L}{\partial \beta_{0}}=-\sum_{i=1}^{n} \alpha_{i} y_{i} \stackrel{!}{=} 0
$$

$$
\frac{\partial L}{\partial \xi_{i}}=\gamma-\alpha_{i}-\mu_{i} \stackrel{!}{=} 0
$$

$$
\Rightarrow \alpha_{i}=\gamma-\mu_{i}
$$

Dual Problem

Input

$$
\beta=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \quad \alpha_{i}=\gamma-\mu_{i}
$$

into

$$
L:=\frac{1}{2}\|\beta\|^{2}+\gamma \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)-(1-\xi)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}
$$

yields the dual problem

$$
\begin{aligned}
L= & \frac{1}{2}\left\langle\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}\right\rangle-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}, x_{i}\right\rangle\right)-\left(1-\xi_{i}\right)\right) \\
& +\gamma \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \mu_{i} \xi_{i}
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Dual Problem

$$
\begin{aligned}
L= & \frac{1}{2}\left\langle\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}\right\rangle-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+\left\langle\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}, x_{i}\right\rangle\right)-\left(1-\xi_{i}\right)\right) \\
& +\gamma \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \mu_{i} \xi_{i} \\
= & \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i}-\sum_{i=1}^{n} \alpha_{i} y_{i} \beta_{0}-\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \\
& -\sum_{i=1}^{n} \alpha_{i} \xi_{i}+\sum_{i=1}^{n} \alpha_{i} \xi_{i} \\
= & -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i}
\end{aligned}
$$

Dual Problem

The dual problem is

$$
\begin{aligned}
& \qquad \begin{aligned}
\text { maximize } L & =-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i} \\
\text { w.r.t. } \sum_{i=1}^{n} \alpha_{i} y_{i} & =0 \\
\alpha_{i} & \leq \gamma \\
\alpha_{i} & \geq 0
\end{aligned}
\end{aligned}
$$

with much simpler constraints.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Separating Hyperplanes

2. Perceptron
3. Maximum Margin Separating Hyperplanes
4. Learning SVMs

5. Non-separable Problems

6. Support Vectors and Kernels

Support Vectors / Separable Case

For points on the right side of the hyperplane (i.e., if a constraint holds),

$$
y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)>1
$$

then L is maximized by $\alpha_{i}=0$: x_{i} is irrelevant.
For points on the wrong side of the hyperplane (i.e., if a constraint is violated),

$$
y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)<1
$$

then L is maximized for $\alpha_{i} \rightarrow \infty$.
For separable data, β and β_{0} have to be changed to make the constraint hold.

For points on the margin, i.e.,

$$
y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)=1
$$

α_{i} is some finite value.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Support Vectors / Inseparable Case

For points on the right side of the hyperplane,

$$
y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)>1, \quad \xi_{i}=0
$$

then L is maximized by $\alpha_{i}=0: x_{i}$ is irrelevant.
For points in the margin as well as on the wrong side of the hyperplane,

$$
y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)=1-\xi_{i}, \quad \xi_{i}>0
$$

α_{i} is some finite value.
For points on the margin, i.e.,

$$
y_{i}\left(\beta_{0}+\left\langle\beta, x_{i}\right\rangle\right)=1, \quad \xi_{i}=0
$$

α_{i} is some finite value.
The data points x_{i} with $\alpha_{i}>0$ are called support vectors.

Decision Function

Due to

$$
\hat{\beta}=\sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} x_{i}
$$

the decision function

$$
\hat{y}(x)=\operatorname{sign} \hat{\beta}_{0}+\langle\hat{\beta}, x\rangle
$$

can be expressed using the training data:

$$
\hat{y}(x)=\operatorname{sign} \hat{\beta}_{0}+\sum_{i=1}^{n} \hat{\alpha}_{i} y_{i}\left\langle x_{i}, x\right\rangle
$$

Only support vectors are required, as only for them $\hat{\alpha}_{i} \neq 0$.
Both, the learning problem and the decision function can be expressed using an inner product / a similarity measure / a kernel $\left\langle x, x^{\prime}\right\rangle$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

High-Dimensional Embeddings / The "kernel trick"

Example:

we map points from R^{2} into the higher dimensional space \mathbb{R}^{6} via

$$
h:\binom{x_{1}}{x_{2}} \mapsto\left(\begin{array}{c}
1 \\
\sqrt{2} x_{1} \\
\sqrt{2} x_{2} \\
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right)
$$

Then the inner product

$$
\begin{aligned}
\left\langle h\left(\binom{x_{1}}{x_{2}}\right), h\left(\binom{x_{1}^{\prime}}{x_{2}^{\prime}}\right)\right\rangle & =1+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime} \\
& =\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}
\end{aligned}
$$

can be computed without having to compute the embedding h explicitely !

Popular Kernels

Some popular kernels are:
linear kernel:

$$
K\left(x, x^{\prime}\right):=\left\langle x, x^{\prime}\right\rangle:=\sum_{i=1}^{n} x_{i} x_{i}^{\prime}
$$

polynomial kernel of degree d :

$$
K\left(x, x^{\prime}\right):=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{d}
$$

radial basis kernel / gaussian kernel :

$$
K\left(x, x^{\prime}\right):=e^{-\frac{\left\|x-x^{\prime}\right\|^{2}}{c}}
$$

neural network kernel / sigmoid kernel :

$$
K\left(x, x^{\prime}\right):=\tanh \left(a\left\langle x, x^{\prime}\right\rangle+b\right)
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Learning SVMs by Submanifold Minimization

1: $\operatorname{procedure}$ LEARN-SVM $\left(\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}, \gamma \in \mathbb{R}^{+}, K\right)$
2: $\quad C:=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} K\left(x_{n}, x_{m}\right)$
3: $\quad c:=(1,1, \ldots, 1)$
4: $\quad A:=\left(y_{1}, y_{2}, \ldots, y_{N}\right), a:=(0)$
5: $\quad B:=\binom{-1}{1}, b:=\binom{0}{\gamma}$
6: $\quad N^{+}:=\left|\left\{n \in\{1, \ldots, N\} \mid y_{n}=+1\right\}\right|, N^{-}:=N-N^{+}$
7: $\quad \alpha_{n}:=\gamma \cdot \begin{cases}\frac{1}{N^{+}} & , \text {if } y_{n}=+1 \\ \frac{1}{N^{-}} & , \text {else }\end{cases}$
8: $\quad \alpha:=\operatorname{MINIMIZE-CSTR-INEQ}(C, c, A, a, B, b, \alpha)$
9: $\quad N^{S}:=\left|\left\{n \in\{1, \ldots, N\} \mid \alpha_{n}>0\right\}\right|$
10: $\quad \beta_{0}:=\frac{1}{N^{S}} \sum_{n=1, \alpha_{n}>0}^{N} y_{n}-\sum_{m=1, \alpha_{m}>0}^{N} \alpha_{m} y_{m} K\left(x_{m}, x_{n}\right)$
11: \quad return $\left(\beta_{0}, \alpha\right)$
Note: I is the identity matrix.

Predicting with SVMs

1: procedure PREDICT-
$\operatorname{SVM}\left(\alpha \in\left(\mathbb{R}_{0}^{+}\right)^{N}, \beta_{0} \in \mathbb{R}, \mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}, K\right)$
2: $\quad \hat{y}:=\beta_{0}$
3: \quad for $n:=1, \ldots, N$ with $\alpha_{n} \neq 0$ do
4:

$$
\hat{y}:=\hat{y}+\alpha_{n} y_{n} K\left(x_{n}, x\right)
$$

5: return \hat{y}

Note: \hat{y} yields the score/certainty factor, sign \hat{y} the predicted class.
From $\mathcal{D}^{\text {train, }}$, only the support vectors $\left(x_{n}, y_{n}\right)$ (having $\alpha_{n}>0$) are required.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Summary (1/2)

- Binary classification problems with linear decision boundaries can be rephrased as finding a separating hyperplane.
- In the linear separable case, there are simple algorithms like perceptron learning to find such a separating hyperplane.
- If one requires the additional property that the hyperplane should have maximal margin, i.e., maximal distance to the closest points of both classes, then a quadratic optimization problem with inequality constraints arises.
- Quadratic optimization problems without constraints as well as with equality constraints can be solved by linear systems of equations. Quadratic optimization problems with inequality constraints require some more complex methods such as submanifold optimization (a sequence of linear systems of equations).

Summary (2/2)

- Optimal hyperplanes can also be formulated for the linear inseparable case by allowing some points to be on the wrong side of the margin, but penalize for their distance from the margin. This also can be formulated as a quadratic optimization problem with inequality constraints.
- The final decision function can be computed in terms of inner products of the query points with some of the data points (called support vectors), which allows to bypass the explicit computation of high dimensional embeddings (kernel trick).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Further Readings

- [Hastie et al., 2005, chapter 12.1-3], [Murphy, 2012, chapter $14.1+2+5$], [James et al., 2013, chapter 9].

References

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining, Inference and Prediction, volume 27. Springer, 2005.
Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning. Springer, 2013.
Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Unconstrained Problem

The unconstrained quadratic optimization problem is

$$
\begin{aligned}
\operatorname{minimize} f(x): & =\frac{1}{2}\langle x, C x\rangle-\langle c, x\rangle \\
\text { w.r.t. } x & \in \mathbb{R}^{n}
\end{aligned}
$$

(with $C \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^{n}$).
The solution of the unconstrained quadratic optimization problem coincides with the solution of the linear systems of equations

$$
C x=c
$$

that can be solved by Gaussian Elimination, Cholesky decomposition, QR decomposition etc.

Proof:

$$
\frac{\partial f(x)}{\partial x}=x^{T} C-c^{T} \stackrel{!}{=} 0 \Leftrightarrow C x=c
$$

Equality Constraints

The quadratic optimization problem with linear equality constraints is

$$
\begin{aligned}
\operatorname{minimize} f(x) & :=\frac{1}{2}\langle x, C x\rangle-\langle c, x\rangle \\
\text { w.r.t. } h(x) & :=A x-b=0 \\
x & \in \mathbb{R}^{n}
\end{aligned}
$$

(with $C \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}$).

Lagrange Function

Definition

Consider the optimization problem

$$
\begin{aligned}
\operatorname{minimize} f(x) & \\
\text { subject to } g(x) & \leq 0 \\
h(x) & =0 \\
x & \in \mathbb{R}^{n}
\end{aligned}
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$.

The Lagrange function of this problem is defined as

$$
L(x, \lambda, \nu):=f(x)+\langle\lambda, g(x)\rangle+\langle\nu, h(x)\rangle
$$

λ and ν are called Lagrange multipliers.

Lower Bounds Lemma

Lemma

Die dual function yields lower bounds for the optimal value of the problem, i.e.,

$$
\bar{f}(\lambda, \nu) \leq f\left(x^{*}\right), \quad \forall \lambda \geq 0, \nu
$$

Proof:
For feasible x, i.e., $g(x) \leq 0$ and $h(x)=0$:

$$
L(x, \lambda, \nu)=f(x)+\langle\lambda, g(x)\rangle+\langle\nu, h(x)\rangle \leq f(x)
$$

Hence

$$
\bar{f}(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu) \leq f(x)
$$

and especially for $x=x^{*}$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Karush-Kuhn-Tucker Conditions

Theorem (Karush-Kuhn-Tucker Conditions)

If
(i) x is optimal for the problem,
(ii) λ, ν are optimal for the dual problem and
(iii) $f(x)=\bar{f}(\lambda, \nu)$,
then the following conditions hold:

$$
\begin{aligned}
g(x) & \leq 0 \\
h(x) & =0 \\
\lambda & \geq 0 \\
\lambda_{i} g_{i}(x) & =0 \\
\frac{\partial f(x)}{\partial x}+\left\langle\lambda, \frac{\partial g(x)}{\partial x}\right\rangle+\left\langle\nu, \frac{\partial h(x)}{\partial x}\right\rangle & =0
\end{aligned}
$$

Karush-Kuhn-Tucker Conditions

Proof: " \Rightarrow "

$$
\begin{aligned}
f(x)=\bar{f}(\lambda, \nu) & =\inf _{x^{\prime}} f\left(x^{\prime}\right)+\left\langle\lambda, g\left(x^{\prime}\right)\right\rangle+\left\langle\nu, h\left(x^{\prime}\right)\right\rangle \\
& \leq f(x)+\langle\lambda, g(x)\rangle+\langle\nu, h(x)\rangle \leq f(x)
\end{aligned}
$$

and therefore equality holds, thus

$$
\langle\lambda, g(x)\rangle=\sum_{i=1}^{m} \lambda_{i} g_{i}(x)=0
$$

and as all terms are non-positive: $\lambda_{i} g_{i}(x)=0$.
Since x minimizes $L\left(x^{\prime}, \lambda, \nu\right)$ over x^{\prime}, the derivative must vanish:

$$
\frac{\partial L(x, \lambda, \nu)}{\partial x}=\frac{\partial f(x)}{\partial x}+\left\langle\lambda, \frac{\partial g(x)}{\partial x}\right\rangle+\left\langle\nu, \frac{\partial h(x)}{\partial x}\right\rangle=0
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Karush-Kuhn-Tucker Conditions

Proof (ctd.): " $\Leftarrow "$
Now let f be convex. Since $\lambda \geq 0, L\left(x^{\prime}, \lambda, \nu\right)$ is convex in x^{\prime}.
As its first derivative vanishes at x, x minimizes $L\left(x^{\prime}, \lambda, \nu\right)$ over x^{\prime}, and thus:

$$
\bar{f}(\lambda, \nu)=L(x, \lambda, \nu)=f(x)+\langle\lambda, g(x)\rangle+\langle\nu, h(x)\rangle=f(x)
$$

Therefore is x optimal for the problem and λ, ν optimal for the dual problem.

Equality Constraints

The quadratic optimization problem with linear equality constraints is

$$
\begin{aligned}
\operatorname{minimize} f(x) & :=\frac{1}{2}\langle x, C x\rangle-\langle c, x\rangle \\
\text { w.r.t. } h(x) & :=A x-b=0 \\
x & \in \mathbb{R}^{n}
\end{aligned}
$$

(with $C \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$).
The KKT conditons for the optimal solution x^{*}, ν^{*} are:

$$
\begin{array}{r}
h\left(x^{*}\right)=A x^{*}-b=0 \\
\frac{\partial f\left(x^{*}\right)}{\partial x}+\left\langle\nu^{*}, \frac{\partial h\left(x^{*}\right)}{\partial x}\right\rangle=C x^{*}-c+A^{T} \nu^{*}=0
\end{array}
$$

which can be written as a single system of linear equations

$$
\left(\begin{array}{cc}
C & A^{T} \\
A & 0
\end{array}\right)\binom{x^{*}}{\nu^{*}}=\binom{c}{b}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Inequality Constraints

The quadratic optimization problem with linear inequality constraints is

$$
\begin{aligned}
\operatorname{minimize} f(x) & :=\frac{1}{2}\langle x, C x\rangle-\langle c, x\rangle \\
\text { w.r.t. } g(x) & :=A x-b \leq 0 \\
x & \in \mathbb{R}^{n}
\end{aligned}
$$

(with $C \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}$).

Inequality constraints are more complex to solve.
But they can be reduced to a sequence of equality constraints.

Inequality Constraints

At each point $x \in \mathbb{R}^{n}$ one distinguishes between active constraints g_{i} with $g_{i}(x)=0$ and inactive constraints g_{i} with $g_{i}(x)<0$.

Active set:

$$
I_{0}(x):=\left\{i \in\{1, \ldots, m\} \mid g_{i}(x)=0\right\}
$$

Inactive constraints stay inactive in a neighborhood of x and can be neglected there.
Active constraints are equality constraints that identify points at the border of the feasible area.
We can restrict our attention to just the points at the actual border, i.e., use the equality constraints

$$
h_{i}(x):=g_{i}(x), \quad i \in I_{0}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Inequality Constraints

If there is an optimal point x^{*} found with optimal lagrange multiplier $\nu^{*} \geq 0$:

$$
\frac{\partial f\left(x^{*}\right)}{\partial x}+\sum_{i \in I_{0}} \nu_{i}^{*} \frac{\partial h_{i}\left(x^{*}\right)}{\partial x}=0
$$

then x^{*} with

$$
\lambda_{i}^{*}:=\left\{\begin{array}{cc}
\nu_{i}^{*}, & i \in I_{0} \\
0, & \text { else }
\end{array}\right.
$$

fullfils the KKT conditions of the original problem:

$$
\lambda_{i}^{*} g_{i}\left(x^{*}\right)=\left\{\begin{array}{cc}
\nu_{i}^{*} h_{i}\left(x^{*}\right)=0, & i \in I_{0} \\
0 g_{i}\left(x^{*}\right)=0, & \text { else }
\end{array}\right.
$$

and

$$
\frac{\partial f\left(x^{*}\right)}{\partial x}+\left\langle\lambda^{*}, \frac{\partial h\left(x^{*}\right)}{\partial x}\right\rangle=\frac{\partial f\left(x^{*}\right)}{\partial x}+\sum_{i \in I_{0}} \nu_{i}^{*} \frac{\partial h_{i}\left(x^{*}\right)}{\partial x}=0
$$

Inequality Constraints

If the optimal point x^{*} on the border has an optimal lagrange multiplier ν^{*} with $\nu_{i}^{*}<0$ for some $i \in I_{0}$,

$$
\frac{\partial f\left(x^{*}\right)}{\partial x}+\sum_{i \in I_{0}} \nu_{i}^{*} \frac{\partial h_{i}\left(x^{*}\right)}{\partial x}=0
$$

then f decreases along $h_{i}:=g_{i}$, thus we can decrease f by moving away from the border by dropping the constraint i.

Inequality Constraints

l minimize-submanifold(target function f, inequality constraint function g) :
$2 x:=$ a random vector with $g(x) \leq 0$
${ }^{3} I_{0}:=I_{0}(x):=\left\{i \mid g_{i}(x)=0\right\}$
${ }^{4}$ do
$5 \quad x^{*}:=\operatorname{argmin}_{x} f(x)$ subject to $g_{i}(x)=0, i \in I_{0}$
$6 \quad$ while $f\left(x^{*}\right)<f(x) \underline{\text { do }}$
$7 \quad \alpha:=\max \left\{\alpha \in[0,1] \mid g\left(x+\alpha\left(x^{*}-x\right)\right) \leq 0\right\}$
$8 \quad x:=x+\alpha\left(x^{*}-x\right)$
$9 \quad I_{0}:=I_{0}(x)$
$10 \quad x^{*}:=\operatorname{argmin}_{x} f(x)$ subject to $g_{i}(x)=0, i \in I_{0}$
$11 \quad \underline{\mathbf{o d}}$
12 Let ν^{*} be the optimal Lagrange multiplier for x^{*}
$13 \quad$ if $\nu^{*} \geq 0$ break $\underline{\mathbf{f}}$
$14 \quad$ choose $i \in I_{0}: \nu_{i}^{*}<0$
$15 \quad I_{0}:=I_{0} \backslash\{i\}$
${ }_{16}$ while true
17 return x

