Syllabus

Fri. 27.10. (1) 0. Introduction
A. Supervised Learning: Linear Models \& Fundamentals

Fri. 3.11. (2) A. 1 Linear Regression
Fri. 10.11. (3) A. 2 Linear Classification
Fri. 17.11. (4) A. 3 Regularization
Fri. 24.11. (5) A. 4 High-dimensional Data
B. Supervised Learning: Nonlinear Models

Fri. 1.12. (6) B. 1 Nearest-Neighbor Models
Fri. 8.12. (7) B. 4 Support Vector Machines
Fri. 15.12. (8) B. 3 Decision Trees
Fri. 22.12. (9) B. 2 Neural Networks

- Christmas Break -

Fri. 12.1. (10) B. 5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning

Fri. 19.1. (11) C. 1 Clustering
Fri. 26.1. (12) C. 2 Dimensionality Reduction
Fri. 2.2. (13) C. 3 Frequent Pattern Mining
Fri. 9.2. (14) Q\&A
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Introduction
2. Examples
3. Inference
4. Learning

Outline

1. Introduction

2. Examples

3. Inference

4. Learning

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Joint Distribution

x_{1} : the sun shines

$$
\left.\left.\begin{array}{l}
p\left(x_{1}=\text { false }\right)=0.25 \\
p\left(x_{1}=\text { true }\right)=0.75
\end{array}\right\} \equiv p\left(x_{1}\right)=\left\lvert\, \begin{array}{ll}
\text { false } & \text { true } \\
\begin{array}{ll}
0.25 & 0.75
\end{array}=(0.25,0.75) \text {) } n=0
\end{array}\right.\right\}
$$

Joint Distribution

x_{1} : the sun shines

$$
\left.\left.\begin{array}{l}
p\left(x_{1}=\text { false }\right)=0.25 \\
p\left(x_{1}=\text { true }\right)=0.75
\end{array}\right\} \equiv p\left(x_{1}\right)=\begin{array}{ll}
\text { false } & \text { true } \\
\begin{array}{ll}
0.25 & 0.75
\end{array}=(0.25,0.75) \text {) }
\end{array}\right\}
$$

x_{2} : it rains

$$
\left.\begin{array}{l}
p\left(x_{2}=\text { false }\right)=0.67 \\
p\left(x_{2}=\text { true }\right)=0.33
\end{array}\right\} \equiv p\left(x_{2}\right)=\left\lvert\, \begin{array}{ll}
\text { false } & \text { true } \\
\hline 0.67 & 0.33
\end{array}=(0.67,0.33)\right.
$$

Joint Distribution

x_{1} : the sun shines

$$
\left.\left.\begin{array}{l}
p\left(x_{1}=\text { false }\right)=0.25 \\
p\left(x_{1}=\text { true }\right)=0.75
\end{array}\right\} \equiv p\left(x_{1}\right)=\left\lvert\, \begin{array}{ll}
\text { false } & \text { true } \\
\begin{array}{ll}
0.25 & 0.75
\end{array}=(0.25,0.75) \text {) } n=(0)
\end{array}\right.\right\}
$$

x_{2} : it rains

$$
\left.\begin{array}{l}
p\left(x_{2}=\text { false }\right)=0.67 \\
p\left(x_{2}=\text { true }\right)=0.33
\end{array}\right\} \equiv p\left(x_{2}\right)=\left\lvert\, \begin{array}{ll}
\text { false } & \text { true } \\
\hline 0.67 \quad 0.33
\end{array}=(0.67,0.33)\right.
$$

joint distribution:

$$
\left.\begin{array}{ll}
p\left(x_{1}=\text { false }, x_{2}=\text { false }\right) & =0.07 \\
p\left(x_{1}=\text { false }, x_{2}=\text { true }\right) & =0.18 \\
p\left(x_{1}=\text { true }, x_{2}=\text { false }\right) & =0.6 \\
p\left(x_{1}=\text { true }, x_{2}=\text { true }\right) & =0.15
\end{array}\right\} \equiv
$$

Joint Distribution

x_{1} : the sun shines

$$
\left.\begin{array}{l}
p\left(x_{1}=\text { false }\right)=0.25 \\
p\left(x_{1}=\text { true }\right)=0.75
\end{array}\right\} \equiv p\left(x_{1}\right)=\begin{array}{|ll}
\text { false } & \text { true } \\
\begin{array}{ll}
0.25 & 0.75
\end{array}=(0.25,0.75)
\end{array}
$$

x_{2} : it rains

$$
\left.\begin{array}{l}
p\left(x_{2}=\text { false }\right)=0.67 \\
p\left(x_{2}=\text { true }\right)=0.33
\end{array}\right\} \equiv p\left(x_{2}\right)=\left\lvert\, \begin{array}{ll}
\text { false } & \text { true } \\
\hline 0.67 & 0.33
\end{array}=(0.67,0.33)\right.
$$

joint distribution:

$$
=\left(\begin{array}{ll}
0.07 & 0.18 \\
0.6 & 0.15
\end{array}\right)
$$

Machine Learning

Independence

for two variables:

$$
p(x, y)=p(x) \cdot p(y)
$$

for two variable subsets:

$$
p\left(x_{1}, x_{2}, \ldots, x_{M}\right)=p\left(x_{l}\right) \cdot p\left(x_{J}\right), \quad I, J \subseteq\{1, \ldots, M\}, I \cap J=\emptyset
$$

Note: $x_{I}:=\left\{x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{K}}\right\}$ for $I:=\left\{m_{1}, m_{2}, \ldots, m_{K}\right\}$.

Independence

for two variables:

$$
p(x, y)=p(x) \cdot p(y)
$$

for two variable subsets:

$$
p\left(x_{1}, x_{2}, \ldots, x_{M}\right)=p\left(x_{I}\right) \cdot p\left(x_{J}\right), \quad I, J \subseteq\{1, \ldots, M\}, I \cap J=\emptyset
$$

Examples:

$\left(\begin{array}{ll}0.07 & 0.18 \\ 0.6 & 0.15\end{array}\right)$
not independent
$\left(\begin{array}{ll}0.17 & 0.08 \\ 0.5 & 0.25\end{array}\right)$
independent

Note: $x_{I}:=\left\{x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{K}}\right\}$ for $I:=\left\{m_{1}, m_{2}, \ldots, m_{K}\right\}$.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Chain Rule

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{M}\right)= & p\left(x_{1}\right) \\
& \cdot p\left(x_{2} \mid x_{1}\right) \\
& \cdot p\left(x_{3} \mid x_{1}, x_{2}\right) \\
& \vdots \\
& \cdot p\left(x_{M} \mid x_{1}, x_{2}, \ldots, x_{M-1}\right)
\end{aligned}
$$

Chain Rule

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{M}\right)= & p\left(x_{1}\right) \\
& \cdot p\left(x_{2} \mid x_{1}\right) \\
& \cdot p\left(x_{3} \mid x_{1}, x_{2}\right) \\
& \vdots \\
& \cdot p\left(x_{M} \mid x_{1}, x_{2}, \ldots, x_{M-1}\right)
\end{aligned}
$$

Examples:

$$
\left(\begin{array}{ll}
0.07 & 0.18 \\
0.6 & 0.15
\end{array}\right)=(0.25,0.75) \cdot\left(\begin{array}{ll}
0.28 & 0.72 \\
0.8 & 0.2
\end{array}\right)
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Chain Rule

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{M}\right)= & p\left(x_{1}\right) \\
& \cdot p\left(x_{2} \mid x_{1}\right) \\
& \cdot p\left(x_{3} \mid x_{1}, x_{2}\right) \\
& \vdots \\
& \cdot p\left(x_{M} \mid x_{1}, x_{2}, \ldots, x_{M-1}\right)
\end{aligned}
$$

Examples:

$$
\left(\begin{array}{ll}
0.17 & 0.08 \\
0.5 & 0.25
\end{array}\right)=(0.25,0.75) \cdot\left(\begin{array}{ll}
0.67 & 0.33 \\
0.67 & 0.33
\end{array}\right)
$$

Conditional Independence

two variables x, y are independent conditionally on variable z :

$$
\begin{aligned}
x \perp y \mid z: \Leftrightarrow p(x, y \mid z)= & p(x \mid z) \\
& \cdot p(y \mid z)
\end{aligned}
$$

two variable sets are independent conditionally on variables z_{1}, \ldots, z_{K} :

$$
\begin{aligned}
\left\{x_{1}, \ldots, x_{l}\right\} \perp\left\{y_{1}, \ldots, y_{J}\right\} \mid\left\{z_{1}, \ldots, z_{K}\right\}: \Leftrightarrow & \\
\qquad p\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{J} \mid z_{1}, \ldots, z_{K}\right)= & p\left(x_{1}, \ldots, x_{I} \mid z_{1}, \ldots, z_{K}\right) \\
& \cdot p\left(y_{1}, \ldots, y_{J} \mid z_{1}, \ldots, z_{K}\right)
\end{aligned}
$$

Conditional Independence / Example

Example:

$$
\begin{array}{r}
x_{n} \perp\left\{x_{1}, \ldots, x_{n-1}\right\} \mid x_{n-1} \quad \forall n \text { (Markov property) } \\
\rightsquigarrow p\left(x_{1}, \ldots, x_{N}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \cdots p\left(x_{M} \mid x_{M-1}\right)
\end{array}
$$

Graphical Models

- represent joint distributions of variables by graphs
- by directed graphs: Bayesian networks
- by undirected graphs: Markov networks
- by mixed directed/undirected graphs.
- nodes represent random variables
- absent edges represent conditional independence

Directed Graph Terminology

- directed graph: $G:=(V, E), E \subseteq V \times V$
- V set called nodes / vertices
- E called edges, $(v, w) \in E$ edge from v to w.
- adjacency matrix $A \in\{0,1\}^{N \times N}$

$$
A_{v, w}:=\delta((v, w) \in E), \quad v, w \in\{1, \ldots, N\}, N:=|V|
$$

- parents: $\operatorname{pa}(v):=\{w \in V \mid(w, v) \in E\}$
- children: $\operatorname{ch}(v):=\{w \in V \mid(v, w) \in E\}$
- neighbors: $\operatorname{nbr}(v):=\operatorname{pa}(v) \cup \mathrm{ch}(v)$
- family: fam $(v):=\mathrm{pa}(v) \cup\{v\}$
- root: v without parents.
- leaf: v without children.

Note: $\delta(P):=1$ if proposition P is true, $:=0$ otherwise.

[Murphy, 2012, fig. 10.1a

Directed Graph Terminology

- path: $p \in V^{*}:\left(p_{i}, p_{i+1}\right) \in E$ for all i.
- $p=\left(p_{1}, \ldots, p_{M}\right), p_{m} \in V$
- length $|p|:=M$
- starts at p_{1}
- ends at p_{M}
- paths $G^{*}:=\left\{p \in V^{*}\left|\left(p_{i}, p_{i+1}\right) \in E \quad \forall i=1, \ldots,|p|-1\right\}\right.$.
- $v \rightsquigarrow w$: exists path from v to w, i.e., $p \in G^{*}: p_{1}=v, p_{|p|}=w$.
- ancestors: $\operatorname{anc}(v):=\{w \in V \mid w \rightsquigarrow v\}$
- descendants: $\operatorname{desc}(v):=\{w \in V \mid v \rightsquigarrow w\}$
- in-degree $|\mathrm{pa}(\mathrm{v})|$
- out-degree $|c h(v)|$
- degree $|\operatorname{nbr}(v)|$

[Murphy, 2012, fig. 10.1a

Note: $V^{*}:=\bigcup_{M \in \mathbb{N}} V^{M}$ finite V-sequences.

Directed Graph Terminology

- cycle/loop at $v: v \rightsquigarrow v$
- self loop: $(v, v) \in E$
- directed acyclic graph / DAG: directed graph without cycles.
- topological ordering: directed graph without cycles.
- numbering of the nodes s.t. all nodes have lower number than their children.
- exists for DAGs.

[Murphy, 2012, fig. 10.1a

Bayesian Networks / Directed Graphical Models

A Bayesian network (aka directed graphical model) is a set of conditional probability distributions/densities (CPDs)

$$
p\left(x_{m} \mid x_{\operatorname{cttt}(m)}\right), \quad m \in\{1, \ldots, M\}
$$

s.t. the graph defined by

$$
\begin{aligned}
& V:=\{1, \ldots, M\} \\
& E:=\{(n, m) \mid m \in V, n \in \operatorname{ctxt}(m)\}, \quad \text { i.e., } \operatorname{pa}(m):=\operatorname{ctxt}(m)
\end{aligned}
$$

is a DAG.
A Bayesian network defines a factorization of the joint distribution

$$
p\left(x_{1}, \ldots, x_{M}\right)=\prod_{m=1}^{M} p\left(x_{m} \mid x_{\mathrm{pa}(m)}\right)
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Bayesian Networks / Example

 For the DAG below,$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{5} \mid x_{3}\right)
$$

[Murphy, 2012, fig. 10.1a

Bayesian Networks / Example

For the DAG below,

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{5} \mid x_{3}\right)
$$

If

- all variables are binary and
- all CPDs given as conditional probability tables (CPTs), then the BN is defined by the following 5 CPTs :

	x_{1}	
x_{2}	0	1
0	\cdots	\cdots
1	\cdots	\cdots

	x_{1}	
x_{3}	0	1
0	\cdots	\cdots
1	\cdots	\cdots

	x_{2}	0		1	
	x_{3}	0	1	0	1
x_{4}	0	\cdots	\cdots	\cdots	\cdots
	1	\cdots	\cdots	\cdots	\cdots

	x_{3}	
x_{5}	0	1
0	\cdots	\cdots
1	\cdots	\cdots

[Murphy, 2012, fig. 10.1a

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Introduction

2. Examples

3. Inference

4. Learning

Naive Bayes Classifier

$$
\begin{aligned}
p\left(y, x_{1}, \ldots, x_{M}\right) & =p(y) p\left(x_{1} \mid y\right) p\left(x_{2} \mid y\right) \cdots p\left(x_{M} \mid y\right) \\
& =p(y) \prod_{m=1}^{M} p\left(x_{m} \mid y\right)
\end{aligned}
$$

Naive Bayes Classifier

Tree Augmented Naive Bayes
[Murphy, 2012, fig. 10.2]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Medical Diagnosis

- bipartite graph
- observed variables x_{1}, \ldots, x_{M} (symptoms)
- hidden variables z_{1}, \ldots, z_{K} (diseases / causes)

$$
p\left(x_{1}, \ldots, x_{M}, z_{1}, \ldots, z_{M}\right)=\prod_{k=1}^{K} p\left(z_{k}\right) \prod_{m=1}^{M} p\left(x_{m} \mid z_{\mathrm{pa}(m)}\right)
$$

Note: In the diagram z is called h and x is called v.

Markov Models

first order:

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{M}\right) & =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \cdots p\left(x_{M} \mid x_{M-1}\right) \\
& =p\left(x_{1}\right) \prod_{m=1}^{M-1} p\left(x_{m+1} \mid x_{m}\right)
\end{aligned}
$$

Markov Models / Second Order

second order:

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{M}\right) & =p\left(x_{1}, x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{2}, x_{3}\right) \cdots p\left(x_{M} \mid x_{M-2}, x_{M-1}\right) \\
& =p\left(x_{1}, x_{2}\right) \prod_{m=2}^{M-1} p\left(x_{m+1} \mid x_{m-1}, x_{m}\right)
\end{aligned}
$$

Hidden Markov Models

- observed variables x_{1}, \ldots, x_{M}
- hidden variables z_{1}, \ldots, z_{M}

$$
p\left(x_{1}, \ldots, x_{M}, z_{1}, \ldots, z_{M}\right)=p\left(z_{1}\right) \prod_{m=1}^{M-1} p\left(z_{m+1} \mid z_{m}\right) \prod_{m=1}^{M} p\left(x_{m} \mid z_{m}\right)
$$

- transition model $p\left(z_{m+1} \mid z_{m}\right)$
- observation model $p\left(x_{m} \mid z_{m}\right)$

[Murphy, 2012, fig. 10.4]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Introduction

2. Examples
3. Inference
4. Learning

The Probabilistic Inference Problem

Given

- a Bayesian network model $\theta:=G=(V, E)$,
- a query consisting of
- a set $X:=\left\{x_{1}, \ldots, x_{M}\right\} \subseteq V$ of predictor variables (aka observed, visible variables)
- with a value v_{m} for each $x_{m}(m=1, \ldots, M)$ and
- a set $Y:=\left\{y_{1}, \ldots, y_{J}\right\} \subseteq V$ of target variables (aka query variables), with $X \cap Y=\emptyset$,
compute

$$
\begin{aligned}
& p(Y \mid X=v ; \theta):=p\left(y_{1}, \ldots, y_{J} \mid x_{1}=v_{1}, x_{2}=v_{2}, \ldots, x_{M}=v_{M} ; \theta\right) \\
= & \left(p\left(y_{1}=w_{1}, \ldots, y_{J}=w_{J} \mid x_{1}=v_{1}, x_{2}=v_{2}, \ldots, x_{M}=v_{M} ; \theta\right)\right)_{w_{1}, \ldots, w_{J}}
\end{aligned}
$$

Variables that are neither predictor variables nor target variables are called nuisance variables.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Inference Without Nuisance Variables

Without nuisance variables: $V=X \dot{\cup} Y$.

$$
p(Y \mid X=v ; \theta) \stackrel{\text { def }}{=} \frac{p(X=v, Y ; \theta)}{p(X=v ; \theta)}=\frac{p(X=v, Y ; \theta)}{\sum_{w} p(X=v, Y=w ; \theta)}
$$

- first, clamp predictors X to their observed values v,
- then, normalize $p(X=v, Y ; \theta)$ to sum to 1 (over Y).
- $p(X=v ; \theta)$ likelihood of the data / probability of evidence is a constant.

Inference With Nuisance Variables

Nuisance variables: $Z:=\left\{z_{1}, \ldots, z_{K}\right\}:=V \backslash(X \dot{\cup} Y)$.

1. add to target variables
2. answer resulting query without nuisance variables: $p(Y, Z \mid X)$.
3. marginalize out nuisance variables:

$$
p(Y \mid X=v ; \theta) \stackrel{\text { marginalization }}{=} \sum_{u} p(Y, Z=u \mid X=v ; \theta)
$$

Note: Summation over u is over all possible values of variables Z.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Inference With Nuisance Variables

Nuisance variables: $Z:=\left\{z_{1}, \ldots, z_{K}\right\}:=V \backslash(X \dot{\cup} Y)$.

1. add to target variables
2. answer resulting query without nuisance variables: $p(Y, Z \mid X)$.
3. marginalize out nuisance variables:

$$
p(Y \mid X=v ; \theta) \stackrel{\text { marginalization }}{=} \sum_{u} p(Y, Z=u \mid X=v ; \theta)
$$

Caveat: This is a naive algorithm never used in practice. See BN lecture for practically useful BN inference algorithms.

Note: Summation over u is over all possible values of variables Z.

Complexity of Inference

- for simplicity assume
- all M predictor variables are nominal with L levels,
- all K nuisance variables are nominal with L levels,
- a single target variable: $Y=\{y\}, J=1$ also nominal with L levels.
- without (Conditional) Independencies:
- full table p requires $L^{M+K+1}-1$ cells storage.
- inference requires $O\left(L^{K+1}\right)$ operations.
- for each $Y=w$ sum over all L^{K} many $Z=u$.
- with (Conditional) Independencies / Bayesian network:
- CPDs p require $O\left((M+K+1) L^{\text {max indegree }+1}\right)$ cells storage.
- inference requires $O\left((K+1) L^{\text {treewidth }+1}\right)$ operations.
- treewidth=1 for a chain!

Note: See the Bayesian networks lecture for BN inference algorithms.

Outline

1. Introduction

2. Examples
3. Inference
4. Learning

Learning Bayesian Networks

- parameter learning: given
- the structure of the network (graph G) and
- a regularization penalty $\operatorname{Reg}(\theta)$,
- data x_{1}, \ldots, x_{N},
learn the CPDs p.

$$
\hat{\theta}:=\underset{\theta}{\arg \max } \sum_{n=1}^{N} \log p\left(x_{n} ; \theta\right)-\operatorname{Reg}(\theta)
$$

- structure learning: given
- data,
learn the structure G and the CPDs p.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Bayesian Approach

- in the Bayesian approach, parameters are also considered to be random variables, thus,
- learning is just a special type of inference (with the parameters as targets)
- information about the distribution of the parameters before seeing the data is required (prior distribution $p(\theta)$)
- parameter learning: given
- the structure of the network (graph G) and
- a prior distribution $p(\theta)$ of the parameters,
- data x_{1}, \ldots, x_{N},
learn the CPDs p.

$$
\hat{\theta}:=\underset{\theta}{\arg \max } \sum_{n=1}^{N} \log p\left(x_{n} ; \theta\right)+\log p(\theta)
$$

Plate Notation

- variables on plates are duplicated
- the number of copies is given in the lower right corner.
- an index is used to differentiate copies of the same variable.

Example 1: data x_{1}, \ldots, x_{N} is independently identically distributed (iid)

[Murphy, 2012, fig. 10.7]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Plate Notation

- variables on plates are duplicated
- the number of copies is given in the lower right corner.
- an index is used to differentiate copies of the same variable.
- variables being in several plates will be duplicated for every combination, i.e., have several indices.
- for clarity, the index should be added to the plate (but often is omitted).
Example 2: Naive Bayes classifier.

Learning from Complete Data

Likelihood decomposes w.r.t. graph structure:

$$
\begin{aligned}
p(\mathcal{D} \mid \theta): & =\prod_{n=1}^{N} p\left(x_{n} \mid \theta\right) \\
& =\prod_{n=1}^{N} \prod_{m=1}^{M} p\left(x_{n, m} \mid x_{n, \mathrm{pa}(m)}, \theta_{m}\right) \\
& =\prod_{m=1}^{M} \prod_{n=1}^{N} p\left(x_{n, m} \mid x_{n, \mathrm{pa}(m)}, \theta_{m}\right) \\
& =\prod_{m=1}^{M} p\left(\mathcal{D}_{m} \mid \theta_{m}\right)
\end{aligned}
$$

where θ_{m} are the parameters of $p\left(x_{m} \mid \mathrm{pa}(m)\right)$
Note: In Bayesian contexts, often $p(\ldots \mid \theta)$ is used instead of $p(\ldots ; \theta)$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Learning from Complete Data

If the prior also factorizes,

$$
p(\theta)=\prod_{m=1}^{M} p\left(\theta_{m}\right)
$$

then the posterior factorizes as well

$$
p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta) p(\theta)=\prod_{m=1}^{M} p\left(\mathcal{D}_{m} \mid \theta_{m}\right) p\left(\theta_{m}\right)
$$

and the parameters θ_{m} of each CPD can be estimated independently.

[^0]
Learning from Complete Data / Dirichlet Prior

If

- all variables are nominal,
- variable m has L_{m} levels ($m=1, \ldots, M$), and
- all CPDs are described by conditional probability tables (CPTs)

$$
\begin{aligned}
p\left(x_{m} \mid x_{\mathrm{pa}(m)}\right)= & \theta_{m, c, l}, \quad c:=x_{\mathrm{pa}(m)}, l:=x_{m} \\
& \text { with } \sum_{l=1}^{L} \theta_{m, c, l}=1, \quad \forall m, c
\end{aligned}
$$

a Dirichlet distribution for each row in the CPT

$$
\theta_{m, c, \cdot} \sim \operatorname{Dir}\left(\alpha_{m, c}\right), \quad \alpha_{m, c} \in\left(\mathbb{R}_{0}^{+}\right)^{L_{m}}
$$

is a useful prior.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Learning from Complete Data / Dirichlet Prior

Then the posterior $p\left(\theta_{m, c, .} \mid \mathcal{D}\right)$ is also Dirichlet:

$$
\begin{aligned}
\theta_{m, c, \cdot} \mid \mathcal{D} & \sim \operatorname{Dir}\left(\alpha_{m, c}+N_{m, c}\right) \\
N_{m, c, l} & :=\sum_{n=1}^{N} \delta\left(x_{n, m}=I, x_{n, \mathrm{pa}(m)=c}\right)
\end{aligned}
$$

with mean $\bar{\theta}_{m, c, l}=\frac{N_{m, c, l}+\alpha_{m, c, l}}{\sum_{l^{\prime}=1}^{L} N_{m, c, l^{\prime}}+\alpha_{m, c, l^{\prime}}}$

Learning from Complete Data / Example

 graph structure: data:

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
0	0	1	0	0
0	1	1	1	1
1	1	0	1	0
0	1	1	0	0
0	1	1	1	0

prior:

$$
\begin{array}{r}
p\left(\theta_{m, c}\right):=\operatorname{Dir}(1,1) \\
\forall m, c
\end{array}
$$

learned parameters for CPT of $x_{4}(m=4)$:

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Learning BN from Complete Data / Algorithm

learn-bn-params $\left(\mathcal{D}^{\text {train }}:=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{M}, G, \alpha\right)$:
for $n:=1: N$: for $m:=1: M$:
$\alpha_{m, \chi_{n, m}, \chi_{n, p(m)}}+=1$
return α
where

- $\mathcal{X}_{m}:=\left\{1, \ldots, L_{m}\right\}$ discrete domains of variable X_{m}
(having L_{m} different levels)
- G is a DAG on $\{1, \ldots, M\}$
- $\left(\alpha_{m, l, c}\right)_{m=1: M, l=1: L_{m}, c \in \prod_{c \in \operatorname{pap}(m)} L_{c} \geq 0 \text { the Dirichlet prior of the parameters }}$

Learning with Missing and/or Hidden Variables

Learning with

- missing values or
- hidden variables
is more complicated as
- the likelihood no longer factorizes and
- neither is convex.
\rightsquigarrow use iterative approximation algorithms to find a local MAP or ML minimum.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Summary

- Bayesian Networks define a joint probability distribution by a factorization of conditional probability distributions (CPDs) $p\left(x_{n} \mid \mathrm{pa}\left(x_{n}\right)\right)$
- Conditions pa(m) form a DAG.
- For nominal variables, all CPDs can be represented as tables (CPTs).
- Storage complexity is $O\left(L^{\text {max indegree+1 }}\right)$ (instead of $O\left(L^{M}\right)$).
- Many model classes essentially are Bayesian networks:
- Naive Bayes classifier, Markov Models, Hidden Markov Models
- Inference in BN means to compute the (marginal joint) distribution of target variables given observed evidence of some predictor variables.
- A Bayesian network can answer queries for arbitrary targets (not just a predefined one as most predictive models).
- Nuisance variables (for a query) are variables neither observed nor used as targets.
- Inference with nuisance variables can be done efficiently for DAGs with small tree width.

Summary (2/2)

- Learning BN has to distinguish between
- parameter learning: learn just the CPDs for a given graph, vs.
- structure learning: learn both, graph and CPDs.
- Parameter learning the maximum aposteriori (MAP) for BN with CPTs and Dirichlet prior can be done simply by counting the frequencies of families in the data.

Further Readings

- [Murphy, 2012, chapter 10].

References

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[^0]: Note: In Bayesian contexts, often $p(\ldots \mid \theta)$ is used instead of $p(\ldots ; \theta)$.

