
Machine Learning

Syllabus
Fri. 27.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 3.11. (2) A.1 Linear Regression
Fri. 10.11. (3) A.2 Linear Classification
Fri. 17.11. (4) A.3 Regularization
Fri. 24.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 1.12. (6) B.1 Nearest-Neighbor Models
Fri. 8.12. (7) B.4 Support Vector Machines
Fri. 15.12. (8) B.3 Decision Trees
Fri. 22.12. (9) B.2 Neural Networks

— Christmas Break —
Fri. 12.1. (10) B.5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning
Fri. 19.1. (11) C.1 Clustering
Fri. 26.1. (12) C.2 Dimensionality Reduction
Fri. 2.2. (13) C.3 Frequent Pattern Mining
Fri. 9.2. (14) Q&A
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Machine Learning

Joint Distribution

x1 : the sun shines

p(x1 = false) = 0.25
p(x1 = true) = 0.75

}
≡ p(x1) =

false true

0.25 0.75
= (0.25, 0.75)

x2 : it rains

p(x2 = false) = 0.67
p(x2 = true) = 0.33

}
≡ p(x2) =

false true

0.67 0.33
= (0.67, 0.33)

joint distribution:

x2

false true

x1 false 0.07 0.18
true 0.6 0.15
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Joint Distribution

x1 : the sun shines

p(x1 = false) = 0.25
p(x1 = true) = 0.75

}
≡ p(x1) =

false true

0.25 0.75
= (0.25, 0.75)

x2 : it rains

p(x2 = false) = 0.67
p(x2 = true) = 0.33

}
≡ p(x2) =

false true

0.67 0.33
= (0.67, 0.33)

joint distribution:

p(x1 = false, x2 = false) = 0.07
p(x1 = false, x2 = true) = 0.18
p(x1 = true, x2 = false) = 0.6
p(x1 = true, x2 = true) = 0.15




≡

p(x1, x2) x2

false true

x1 false 0.07 0.18
true 0.6 0.15

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 32



Machine Learning

Joint Distribution

x1 : the sun shines

p(x1 = false) = 0.25
p(x1 = true) = 0.75

}
≡ p(x1) =

false true

0.25 0.75
= (0.25, 0.75)

x2 : it rains

p(x2 = false) = 0.67
p(x2 = true) = 0.33

}
≡ p(x2) =

false true

0.67 0.33
= (0.67, 0.33)

joint distribution:

p(x1, x2) =

x2

false true

x1 false 0.07 0.18
true 0.6 0.15

=

(
0.07 0.18
0.6 0.15

)
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Machine Learning

Independence

for two variables:

p(x , y) = p(x) · p(y)

for two variable subsets:

p(x1, x2, . . . , xM) = p(xI ) · p(xJ), I , J ⊆ {1, . . . ,M}, I ∩ J = ∅

Examples:
(

0.07 0.18
0.6 0.15

) (
0.17 0.08
0.5 0.25

)

not independent independent
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Note: xI := {xm1 , xm2 , . . . , xmK } for I := {m1,m2, . . . ,mK}.



Machine Learning

Independence

for two variables:

p(x , y) = p(x) · p(y)

for two variable subsets:

p(x1, x2, . . . , xM) = p(xI ) · p(xJ), I , J ⊆ {1, . . . ,M}, I ∩ J = ∅

Examples:
(

0.07 0.18
0.6 0.15

) (
0.17 0.08
0.5 0.25

)

not independent independent

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 32

Note: xI := {xm1 , xm2 , . . . , xmK } for I := {m1,m2, . . . ,mK}.

Machine Learning

Chain Rule

p(x1, x2, . . . , xM) =p(x1)

· p(x2 | x1)

· p(x3 | x1, x2)

...

· p(xM | x1, x2, . . . , xM−1)

Examples:
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p(x1, x2, . . . , xM) =p(x1)

· p(x2 | x1)

· p(x3 | x1, x2)

...

· p(xM | x1, x2, . . . , xM−1)

Examples:

(
0.07 0.18
0.6 0.15

)
= (0.25, 0.75) ·

(
0.28 0.72
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)
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Machine Learning

Chain Rule

p(x1, x2, . . . , xM) =p(x1)

· p(x2 | x1)

· p(x3 | x1, x2)

...

· p(xM | x1, x2, . . . , xM−1)

Examples:

(
0.17 0.08
0.5 0.25

)
= (0.25, 0.75) ·
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0.67 0.33
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Machine Learning

Conditional Independence

two variables x , y are independent conditionally on variable z :

x ⊥ y | z :⇔ p(x , y | z) = p(x | z)

· p(y | z)

two variable sets are independent conditionally on variables z1, . . . , zK :

{x1, . . . , xI} ⊥ {y1, . . . , yJ} | {z1, . . . , zK} :⇔
p(x1, . . . , xI , y1, . . . , yJ | z1, . . . , zK ) = p(x1, . . . , xI | z1, . . . , zK )

· p(y1, . . . , yJ | z1, . . . , zK )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 32

Machine Learning

Conditional Independence / Example

Example:

xn ⊥ {x1, . . . , xn−1} | xn−1 ∀n (Markov property)

 p(x1, . . . , xN) = p(x1)p(x2 | x1)p(x3 | x2) · · · p(xM | xM−1)
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Machine Learning

Graphical Models

I represent joint distributions of variables by graphs
I by directed graphs: Bayesian networks
I by undirected graphs: Markov networks
I by mixed directed/undirected graphs.

I nodes represent random variables

I absent edges represent conditional independence
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Machine Learning

Directed Graph Terminology

I directed graph: G := (V ,E ), E ⊆ V × V
I V set called nodes / vertices
I E called edges, (v ,w) ∈ E edge from v to w .

I adjacency matrix A ∈ {0, 1}N×N
Av ,w := δ((v ,w) ∈ E ), v ,w ∈ {1, . . . ,N},N := |V |

I parents: pa(v) := {w ∈ V | (w , v) ∈ E}
I children: ch(v) := {w ∈ V | (v ,w) ∈ E}
I neighbors: nbr(v) := pa(v) ∪ ch(v)

I family: fam(v) := pa(v) ∪ {v}
I root: v without parents.

I leaf: v without children.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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4 5

2 3

1

[Murphy, 2012, fig. 10.1a]Note: δ(P) := 1 if proposition P is true, := 0 otherwise.



Machine Learning

Directed Graph Terminology

I path: p ∈ V ∗: (pi , pi+1) ∈ E for all i .
I p = (p1, . . . , pM), pm ∈ V
I length |p| := M
I starts at p1

I ends at pM
I paths G∗ := {p ∈ V ∗ | (pi , pi+1) ∈ E ∀i = 1, . . . , |p| − 1}.
I v  w : exists path from v to w , i.e., p ∈ G∗ : p1 = v , p|p| = w .

I ancestors: anc(v) := {w ∈ V | w  v}
I descendants: desc(v) := {w ∈ V | v  w}
I in-degree |pa(v)|
I out-degree |ch(v)|
I degree |nbr(v)|
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4 5

2 3

1

[Murphy, 2012, fig. 10.1a]Note: V ∗ :=
⋃

M∈N VM finite V -sequences.

Machine Learning

Directed Graph Terminology

I cycle/loop at v : v  v
I self loop: (v , v) ∈ E

I directed acyclic graph / DAG: directed graph without cycles.
I topological ordering: directed graph without cycles.

I numbering of the nodes s.t. all nodes have lower number than their
children.

I exists for DAGs.
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4 5

2 3

1

[Murphy, 2012, fig. 10.1a]



Machine Learning

Bayesian Networks / Directed Graphical Models
A Bayesian network (aka directed graphical model) is a set of
conditional probability distributions/densities (CPDs)

p(xm | xctxt(m)), m ∈ {1, . . . ,M}

s.t. the graph defined by

V :={1, . . . ,M}
E :={(n,m) | m ∈ V , n ∈ ctxt(m)}, i.e., pa(m) := ctxt(m)

is a DAG.
A Bayesian network defines a factorization of the joint distribution

p(x1, . . . , xM) =
M∏

m=1

p(xm | xpa(m))
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Machine Learning

Bayesian Networks / Example
For the DAG below,

p(x1, x2, x3, x4, x5) = p(x1) p(x2 | x1) p(x3 | x1) p(x4 | x2, x3) p(x5 | x3)

If

I all variables are binary and

I all CPDs given as conditional probability tables (CPTs),

then the BN is defined by the following 5 CPTs:

x1

0 . . .
1 . . .

x1

x2 0 1
0 . . . . . .
1 . . . . . .

x1

x3 0 1
0 . . . . . .
1 . . . . . .

x2 0 1
x3 0 1 0 1

x4 0 . . . . . . . . . . . .
1 . . . . . . . . . . . .

x3

x5 0 1
0 . . . . . .
1 . . . . . .
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[Murphy, 2012, fig. 10.1a]
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4 5

2 3

1

[Murphy, 2012, fig. 10.1a]
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Machine Learning

Naive Bayes Classifier

p(y , x1, . . . , xM) = p(y)p(x1 | y)p(x2 | y) · · · p(xM | y)

= p(y)
M∏

m=1

p(xm | y)

Y

X1 X2 X3 X4

Naive Bayes Classifier

Y

X1X2 X3

X4

Tree Augmented Naive Bayes
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[Murphy, 2012, fig. 10.2]

Machine Learning

Medical Diagnosis

I bipartite graph

I observed variables x1, . . . , xM (symptoms)

I hidden variables z1, . . . , zK (diseases / causes)

p(x1, . . . , xM , z1, . . . , zM) =
K∏

k=1

p(zk)
M∏

m=1

p(xm | zpa(m))

h1 h2 h3

v1 v2 v3 v4 v5

1
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[Murphy, 2012, fig. 10.5b]Note: In the diagram z is called h and x is called v .



Machine Learning

Markov Models

first order:

p(x1, . . . , xM) = p(x1)p(x2 | x1)p(x3 | x2) · · · p(xM | xM−1)

= p(x1)
M−1∏

m=1

p(xm+1 | xm)

x1 x2 x3

· · ·
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[Murphy, 2012, fig. 10.3a]

Machine Learning

Markov Models / Second Order

second order:

p(x1, . . . , xM) = p(x1, x2)p(x3 | x1, x2)p(x4 | x2, x3) · · · p(xM | xM−2, xM−1)

= p(x1, x2)
M−1∏

m=2

p(xm+1 | xm−1, xm)

x1 x2 x3 x4

· · ·

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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[Murphy, 2012, fig. 10.3b]



Machine Learning

Hidden Markov Models

I observed variables x1, . . . , xM
I hidden variables z1, . . . , zM

p(x1, . . . , xM , z1, . . . , zM) = p(z1)
M−1∏

m=1

p(zm+1 | zm)
M∏

m=1

p(xm | zm)

I transition model p(zm+1 | zm)

I observation model p(xm | zm)

x1 x2 xT

z1 z2 zT

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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[Murphy, 2012, fig. 10.4]
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Machine Learning

The Probabilistic Inference Problem
Given

I a Bayesian network model θ := G = (V ,E ),
I a query consisting of

I a set X := {x1, . . . , xM} ⊆ V of predictor variables
(aka observed, visible variables)

I with a value vm for each xm (m = 1, . . . ,M) and
I a set Y := {y1, . . . , yJ} ⊆ V of target variables

(aka query variables),
with X ∩ Y = ∅,

compute

p(Y | X = v ; θ) := p(y1, . . . , yJ | x1 = v1, x2 = v2, . . . , xM = vM ; θ)

= (p(y1 = w1, . . . , yJ = wJ | x1 = v1, x2 = v2, . . . , xM = vM ; θ))w1,...,wJ

Variables that are neither predictor variables nor target variables are called
nuisance variables.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning

Inference Without Nuisance Variables

Without nuisance variables: V = X ∪̇Y .

p(Y | X = v ; θ)
def
=

p(X = v ,Y ; θ)

p(X = v ; θ)
=

p(X = v ,Y ; θ)∑
w p(X = v ,Y = w ; θ)

I first, clamp predictors X to their observed values v ,

I then, normalize p(X = v ,Y ; θ) to sum to 1 (over Y ).

I p(X = v ; θ) likelihood of the data / probability of evidence
is a constant.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 32

Note: Summation over w is over all possible values of variables Y .



Machine Learning

Inference With Nuisance Variables

Nuisance variables: Z := {z1, . . . , zK} := V \ (X ∪̇Y ).

1. add to target variables

2. answer resulting query without nuisance variables: p(Y ,Z | X ).

3. marginalize out nuisance variables:

p(Y | X = v ; θ)
marginalization

=
∑

u

p(Y ,Z = u | X = v ; θ)

Caveat: This is a naive algorithm never used in practice. See BN lecture
for practically useful BN inference algorithms.
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Note: Summation over u is over all possible values of variables Z .
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Machine Learning

Complexity of Inference

I for simplicity assume
I all M predictor variables are nominal with L levels,
I all K nuisance variables are nominal with L levels,
I a single target variable: Y = {y}, J = 1

also nominal with L levels.

I without (Conditional) Independencies:
I full table p requires LM+K+1 − 1 cells storage.
I inference requires O(LK+1) operations.

I for each Y = w sum over all LK many Z = u.

I with (Conditional) Independencies / Bayesian network:
I CPDs p require O((M + K + 1)Lmax indegree+1) cells storage.
I inference requires O((K + 1)Ltreewidth+1) operations.

I treewidth=1 for a chain!
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Note: See the Bayesian networks lecture for BN inference algorithms.
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Machine Learning

Learning Bayesian Networks

I parameter learning: given
I the structure of the network (graph G ) and
I a regularization penalty Reg(θ),
I data x1, . . . , xN ,

learn the CPDs p.

θ̂ := arg max
θ

N∑

n=1

log p(xn; θ)− Reg(θ)

I structure learning: given
I data,

learn the structure G and the CPDs p.
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Machine Learning

Bayesian Approach

I in the Bayesian approach, parameters are also considered to be
random variables, thus,

I learning is just a special type of inference
(with the parameters as targets)

I information about the distribution of the parameters before seeing the
data is required (prior distribution p(θ))

I parameter learning: given
I the structure of the network (graph G ) and
I a prior distribution p(θ) of the parameters,
I data x1, . . . , xN ,

learn the CPDs p.

θ̂ := arg max
θ

N∑

n=1

log p(xn; θ) + log p(θ)
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Machine Learning

Plate Notation

I variables on plates are duplicated
I the number of copies is given in the lower right corner.

I an index is used to differentiate copies of the same variable.

I variables being in several plates will be duplicated for every
combination, i.e., have several indices.

I for clarity, the index should be added to the plate
(but often is omitted).

Example 1: data x1, . . . , xN is independently identically distributed (iid)

θ

X1 XN

N

θ

Xi
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[Murphy, 2012, fig. 10.7]

Machine Learning

Plate Notation
I variables on plates are duplicated

I the number of copies is given in the lower right corner.

I an index is used to differentiate copies of the same variable.
I variables being in several plates will be duplicated for every

combination, i.e., have several indices.
I for clarity, the index should be added to the plate

(but often is omitted).

Example 2: Naive Bayes classifier.

θc1 . . . θcD

C

Xi1 . . . XiD

Yi

N

π

D

C

N

θjc

Xij

Yi

π
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[Murphy, 2012, fig. 10.8]



Machine Learning

Learning from Complete Data

Likelihood decomposes w.r.t. graph structure:

p(D | θ) : =
N∏

n=1

p(xn | θ)

=
N∏

n=1

M∏

m=1

p(xn,m | xn,pa(m), θm)

=
M∏

m=1

N∏

n=1

p(xn,m | xn,pa(m), θm)

=
M∏

m=1

p(Dm | θm)

where θm are the parameters of p(xm | pa(m))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 32

Note: In Bayesian contexts, often p(. . . | θ) is used instead of p(. . . ; θ).

Machine Learning

Learning from Complete Data

If the prior also factorizes,

p(θ) =
M∏

m=1

p(θm)

then the posterior factorizes as well

p(θ | D) ∝ p(D | θ)p(θ) =
M∏

m=1

p(Dm | θm)p(θm)

and the parameters θm of each CPD can be estimated independently.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 32

Note: In Bayesian contexts, often p(. . . | θ) is used instead of p(. . . ; θ).



Machine Learning

Learning from Complete Data / Dirichlet Prior

If

I all variables are nominal,

I variable m has Lm levels (m = 1, . . . ,M), and

I all CPDs are described by conditional probability tables (CPTs)

p(xm | xpa(m)) = θm,c,l , c := xpa(m), l := xm

with
L∑

l=1

θm,c,l = 1, ∀m, c

a Dirichlet distribution for each row in the CPT

θm,c,· ∼ Dir(αm,c), αm,c ∈ (R+
0 )Lm

is a useful prior.
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Machine Learning

Learning from Complete Data / Dirichlet Prior

Then the posterior p(θm,c,· | D) is also Dirichlet:

θm,c,· | D ∼ Dir(αm,c + Nm,c)

Nm,c,l : =
N∑

n=1

δ(xn,m = l , xn,pa(m)=c)

with mean θ̄m,c,l =
Nm,c,l + αm,c,l∑L

l ′=1 Nm,c,l ′ + αm,c,l ′
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Learning from Complete Data / Example
graph structure:

4 5

2 3

1

data:

x1 x2 x3 x4 x5

0 0 1 0 0
0 1 1 1 1
1 1 0 1 0
0 1 1 0 0
0 1 1 1 0

prior:

p(θm,c) := Dir(1, 1)

∀m, c

learned parameters for CPT of x4 (m = 4):

c = xpa(m) Nm,c,l θ̄m,c,l
x2 x3 N4,c,1 N4,c,0 θ̄4,c,1 θ̄4,c,0

0 0 0 0 1/2 1/2
1 0 1 0 2/3 1/3
0 1 0 1 1/3 2/3
1 1 2 1 3/5 2/5
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[Murphy, 2012, fig. 10.1a]

Machine Learning

Learning BN from Complete Data / Algorithm

1 learn-bn-params(Dtrain := {x1, . . . , xN} ⊂ X 1× · · · × XM ,G , α) :
2 for n := 1 : N:
3 for m := 1 : M:
4 αm,xn,m,xn,pa(m)

+= 1

5 return α

where

I Xm := {1, . . . , Lm} discrete domains of variable Xm

(having Lm different levels)

I G is a DAG on {1, . . . ,M}
I (αm,l,c)m=1:M,l=1:Lm,c∈

∏
c∈pa(m) Lc

≥ 0 the Dirichlet prior of the parameters
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Learning with Missing and/or Hidden Variables

Learning with

I missing values or

I hidden variables

is more complicated as

I the likelihood no longer factorizes and

I neither is convex.

 use iterative approximation algorithms to find a local MAP or ML
minimum.
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Machine Learning

Summary
I Bayesian Networks define a joint probability distribution by a

factorization of conditional probability distributions (CPDs)
p(xn | pa(xn))

I Conditions pa(m) form a DAG.
I For nominal variables, all CPDs can be represented as tables (CPTs).
I Storage complexity is O(Lmax indegree+1) (instead of O(LM)).

I Many model classes essentially are Bayesian networks:
I Naive Bayes classifier, Markov Models, Hidden Markov Models

I Inference in BN means to compute the (marginal joint) distribution
of target variables given observed evidence of some predictor
variables.

I A Bayesian network can answer queries for arbitrary targets
(not just a predefined one as most predictive models).

I Nuisance variables (for a query) are variables neither observed nor
used as targets.

I Inference with nuisance variables can be done efficiently for DAGs with
small tree width.
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Summary (2/2)

I Learning BN has to distinguish between
I parameter learning: learn just the CPDs for a given graph, vs.
I structure learning: learn both, graph and CPDs.

I Parameter learning the maximum aposteriori (MAP) for BN with
CPTs and Dirichlet prior can be done simply by counting the
frequencies of families in the data.
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Machine Learning

Further Readings

I [Murphy, 2012, chapter 10].
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