Syllabus

Fri. 27.10.	(1)	0. Introduction
F		A. Supervised Learning: Linear Models & Fundamentals
Fri. 3.11.	(2)	A.1 Linear Regression
Fri. 10.11.	(3)	A.2 Linear Classification
Fri. 17.11.	(4)	A.3 Regularization
Fri. 24.11.	(5)	A.4 High-dimensional Data
		B. Supervised Learning: Nonlinear Models
Fri. 1.12.	(6)	B.1 Nearest-Neighbor Models
Fri. 8.12.	(7)	B.4 Support Vector Machines
Fri. 15.12.	(8)	B.3 Decision Trees
Fri. 22.12.	(9)	B.2 Neural Networks
		— Christmas Break —
Fri. 12.1.	(10)	B.5 A First Look at Bayesian and Markov Networks
		C. Unsupervised Learning
Fri. 19.1.	(11)	C.1 Clustering
Fri. 26.1.	(12)	C.2 Dimensionality Reduction
Fri. 2.2.	(13)	C.3 Frequent Pattern Mining
Fri. 9.2.	(14)	Q&A
	(+)	

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Introduction

- 2. Examples
- 3. Inference
- 4. Learning

1 / 32

Ners,

Outline

1. Introduction

- 2. Examples
- 3. Inference
- 4. Learning

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Joint Distribution

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$

$$begin{subarray}{c} p(x_1 = \text{false true} \\ \hline 0.25 & 0.75 \\ \hline 0.25 & 0.75 \\ \hline \end{array} = (0.25, 0.75)$$

Joint Distribution

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$

$$begin{subarray}{c} p(x_1 = \text{false true} \\ \hline 0.25 & 0.75 \\ \hline 0.25 & 0.75 \\ \hline \end{array} = (0.25, 0.75)$$

 x_2 : it rains

$$p(x_2 = \text{false}) = 0.67 \\ p(x_2 = \text{true}) = 0.33 \ \ \} \equiv p(x_2) = \left| \begin{array}{c} \text{false true} \\ \hline 0.67 & 0.33 \end{array} \right| = (0.67, 0.33)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Joint Distribution

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$

$$begin{subarray}{c} p(x_1 = \text{true}) = 0.75 \\ \hline 0.25 & 0.75 \\ \hline 0.25$$

 x_2 : it rains

$$p(x_2 = \text{false}) = 0.67 p(x_2 = \text{true}) = 0.33$$
 $\ge p(x_2) =$ $\frac{\text{false true}}{0.67 \quad 0.33} = (0.67, 0.33)$

joint distribution:

$$p(x_1 = \text{false}, x_2 = \text{false}) = 0.07 p(x_1 = \text{false}, x_2 = \text{true}) = 0.18 p(x_1 = \text{true}, x_2 = \text{false}) = 0.6 p(x_1 = \text{true}, x_2 = \text{true}) = 0.15$$

$$= \frac{p(x_1, x_2) \qquad x_2}{\text{false true}} \\ = \frac{p(x_1, x_2) \qquad x_2}{x_1 \quad \text{false true}} \\ = \frac{p(x_1, x_2) \qquad x_2}{x_1 \quad \text{false true}} \\ = \frac{p(x_1, x_2) \qquad x_2}{x_1 \quad \text{false true}} \\ = \frac{p(x_1, x_2) \qquad x_2}{x_1 \quad \text{false true}} \\ = \frac{p(x_1, x_2) \qquad x_2}{x_1 \quad \text{false true}} \\ = \frac{p(x_1, x_2) \quad x_2}{x_1 \quad \text{false tru$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Joint Distribution

 x_1 : the sun shines

$$p(x_1 = \text{false}) = 0.25 p(x_1 = \text{true}) = 0.75$$

$$begin{subarray}{c} p(x_1 = \text{true}) = 0.75 \\ \hline 0.25 & 0.75 \\ \hline 0.25$$

 x_2 : it rains

$$p(x_2 = \text{false}) = 0.67 p(x_2 = \text{true}) = 0.33$$

$$= p(x_2) = \begin{vmatrix} \text{false true} \\ 0.67 & 0.33 \end{vmatrix} = (0.67, 0.33)$$

joint distribution:

 $p(x_1, x_2) = \frac{\begin{vmatrix} x_2 \\ false & true \\ \hline x_1 & false & 0.07 & 0.18 \\ true & 0.6 & 0.15 \end{vmatrix} = \begin{pmatrix} 0.07 & 0.18 \\ 0.6 & 0.15 \end{pmatrix}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Independence

for two variables:

$$p(x,y) = p(x) \cdot p(y)$$

for two variable subsets:

$$p(x_1, x_2, \ldots, x_M) = p(x_I) \cdot p(x_J), \quad I, J \subseteq \{1, \ldots, M\}, I \cap J = \emptyset$$

Independence

2 / 32

for two variables:

$$p(x,y) = p(x) \cdot p(y)$$

for two variable subsets:

$$p(x_1, x_2, \ldots, x_M) = p(x_I) \cdot p(x_J), \quad I, J \subseteq \{1, \ldots, M\}, I \cap J = \emptyset$$

Examples:

(0.07 0).18 \	(0.17	0.08 \
$ \left(\begin{array}{ccc} 0.07 & 0\\ 0.6 & 0 \end{array}\right) $).15 /		0.5	$\left(\begin{array}{c} 0.08\\ 0.25\end{array}\right)$
not indepe	endent		inde	pendent

Note: $x_I := \{x_{m_1}, x_{m_2}, \dots, x_{m_K}\}$ for $I := \{m_1, m_2, \dots, m_K\}$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Chain Rule

$$p(x_1, x_2, ..., x_M) = p(x_1)
\cdot p(x_2 | x_1)
\cdot p(x_3 | x_1, x_2)
\vdots
\cdot p(x_M | x_1, x_2, ..., x_{M-1})$$

$$p(x_1, x_2, ..., x_M) = p(x_1)
\cdot p(x_2 | x_1)
\cdot p(x_3 | x_1, x_2)
\vdots
\cdot p(x_M | x_1, x_2, ..., x_{M-1})$$

Examples:

$$\left(\begin{array}{cc} 0.07 & 0.18 \\ 0.6 & 0.15 \end{array}\right) = (0.25, 0.75) \cdot \left(\begin{array}{cc} 0.28 & 0.72 \\ 0.8 & 0.2 \end{array}\right)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Chain Rule

$$p(x_1, x_2, ..., x_M) = p(x_1)
\cdot p(x_2 | x_1)
\cdot p(x_3 | x_1, x_2)
\vdots
\cdot p(x_M | x_1, x_2, ..., x_{M-1})$$

Examples:

$$\left(\begin{array}{cc} 0.17 & 0.08\\ 0.5 & 0.25 \end{array}\right) = (0.25, 0.75) \cdot \left(\begin{array}{cc} 0.67 & 0.33\\ 0.67 & 0.33 \end{array}\right)$$

3 / 32

Ners,

Conditional Independence

two variables x, y are independent conditionally on variable z:

$$x \perp y \mid z :\Leftrightarrow p(x, y \mid z) = p(x \mid z)$$

 $\cdot p(y \mid z)$

two variable sets are independent conditionally on variables z_1, \ldots, z_K :

$$\{x_1, \ldots, x_I\} \perp \{y_1, \ldots, y_J\} \mid \{z_1, \ldots, z_K\} :\Leftrightarrow \\ p(x_1, \ldots, x_I, y_1, \ldots, y_J \mid z_1, \ldots, z_K) = p(x_1, \ldots, x_I \mid z_1, \ldots, z_K) \\ \cdot p(y_1, \ldots, y_J \mid z_1, \ldots, z_K)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Conditional Independence / Example

4/52

Example:

$$x_n \perp \{x_1, \dots, x_{n-1}\} \mid x_{n-1} \quad \forall n \text{ (Markov property)} \\ \rightsquigarrow p(x_1, \dots, x_N) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_M \mid x_{M-1})$$

Graphical Models

- represent joint distributions of variables by graphs
 - by directed graphs: Bayesian networks
 - by undirected graphs: Markov networks
 - ► by mixed directed/undirected graphs.
- nodes represent random variables
- absent edges represent conditional independence

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Directed Graph Terminology

- directed graph: $G := (V, E), E \subseteq V \times V$
 - V set called nodes / vertices
 - *E* called **edges**, $(v, w) \in E$ edge from v to w.
- adjacency matrix $A \in \{0, 1\}^{N \times N}$

$$A_{v,w} := \delta((v,w) \in E), \quad v,w \in \{1,\ldots,N\}, N := |V|$$

- ▶ parents: $pa(v) := \{w \in V \mid (w, v) \in E\}$
- children: $ch(v) := \{w \in V \mid (v, w) \in E\}$
- **neighbors**: $nbr(v) := pa(v) \cup ch(v)$
- family: fam $(v) := pa(v) \cup \{v\}$
- ▶ **root**: *v* without parents.
- ▶ **leaf**: *v* without children.

Note: $\delta(P) := 1$ if proposition P is true, := 0 otherwise.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

[Murphy, 2012, fig. 10.1a

Directed Graph Terminology

- $p = (p_1, ..., p_M), p_m \in V$
- length |p| := M
- ► starts at *p*₁
- ▶ ends at *p*_M
- ▶ paths $G^* := \{ p \in V^* \mid (p_i, p_{i+1}) \in E \quad \forall i = 1, \dots, |p| 1 \}.$
- ▶ $v \rightsquigarrow w$: exists path from v to w, i.e., $p \in G^*$: $p_1 = v, p_{|p|} = w$.
- ancestors: $anc(v) := \{w \in V \mid w \rightsquigarrow v\}$
- **descendants**: desc(v) := { $w \in V | v \rightsquigarrow w$ }
- ► in-degree |pa(v)|
- ▶ out-degree |ch(v)|
- degree |nbr(v)|

Note: $V^* := \bigcup_{M \in \mathbb{N}} V^M$ finite *V*-sequences.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Directed Graph Terminology

- ► cycle/loop at v: v ~→ v
 - self loop: $(v, v) \in E$
- directed acyclic graph / DAG: directed graph without cycles.
- topological ordering: directed graph without cycles.
 - numbering of the nodes s.t. all nodes have lower number than their children.
 - exists for DAGs.

[Murphy, 2012, fig. 10.1a

[Murphy, 2012, fig. 10.1a

Bayesian Networks / Directed Graphical Models A Bayesian network (aka directed graphical model) is a set of

conditional probability distributions/densities (CPDs)

$$p(x_m \mid x_{\mathsf{ctxt}(m)}), \quad m \in \{1, \ldots, M\}$$

s.t. the graph defined by

$$V := \{1, \dots, M\}$$

$$E := \{(n, m) \mid m \in V, n \in \mathsf{ctxt}(m)\}, \quad \text{i.e., } \mathsf{pa}(m) := \mathsf{ctxt}(m)$$

is a DAG.

A Bayesian network defines a factorization of the joint distribution

$$p(x_1,\ldots,x_M) = \prod_{m=1}^M p(x_m \mid x_{\mathsf{pa}(m)})$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Bayesian Networks / Example

For the DAG below,

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2, x_3) p(x_5 \mid x_3)$

[Murphy, 2012, fig. 10.1a

Bayesian Networks / Example

For the DAG below,

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2, x_3) p(x_5 \mid x_3)$

lf

- all variables are binary and
- ► all CPDs given as conditional probability tables (CPTs),

then the BN is defined by the following 5 CPTs:

[Murphy, 2012, fig. 10.1a

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Introduction

2. Examples

- 3. Inference
- 4. Learning

$$p(y, x_1, \dots, x_M) = p(y)p(x_1 \mid y)p(x_2 \mid y) \cdots p(x_M \mid y)$$
$$= p(y) \prod_{m=1}^M p(x_m \mid y)$$

Naive Bayes Classifier

Tree Augmented Naive Bayes [Murphy, 2012, fig. 10.2]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Medical Diagnosis

- bipartite graph
- observed variables x_1, \ldots, x_M (symptoms)
- hidden variables z_1, \ldots, z_K (diseases / causes)

$$p(x_1,...,x_M,z_1,...,z_M) = \prod_{k=1}^{K} p(z_k) \prod_{m=1}^{M} p(x_m \mid z_{pa(m)})$$

Note: In the diagram z is called h and x is called v.

[Murphy, 2012, fig. 10.5b

Markov Models

first order:

$$p(x_1, \dots, x_M) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_M \mid x_{M-1})$$
$$= p(x_1) \prod_{m=1}^{M-1} p(x_{m+1} \mid x_m)$$

[Murphy, 2012, fig. 10.3a

14 / 32

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Markov Models / Second Order

second order:

$$p(x_1, \dots, x_M) = p(x_1, x_2) p(x_3 \mid x_1, x_2) p(x_4 \mid x_2, x_3) \cdots p(x_M \mid x_{M-2}, x_{M-1})$$
$$= p(x_1, x_2) \prod_{m=2}^{M-1} p(x_{m+1} \mid x_{m-1}, x_m)$$

[Murphy, 2012, fig. 10.3b

Hidden Markov Models

- observed variables x_1, \ldots, x_M
- hidden variables z_1, \ldots, z_M

$$p(x_1,\ldots,x_M,z_1,\ldots,z_M) = p(z_1) \prod_{m=1}^{M-1} p(z_{m+1} \mid z_m) \prod_{m=1}^M p(x_m \mid z_m)$$

- transition model $p(z_{m+1} | z_m)$
- observation model $p(x_m \mid z_m)$

[Murphy, 2012, fig. 10.4]

16 / 32

vers

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Introduction

2. Examples

3. Inference

4. Learning

The Probabilistic Inference Problem

Given

- ▶ a Bayesian network model $\theta := G = (V, E)$,
- ► a **query** consisting of
 - a set X := {x₁,..., x_M} ⊆ V of predictor variables (aka observed, visible variables)
 - with a value v_m for each x_m (m = 1, ..., M) and
 - a set Y := {y₁,..., y_J} ⊆ V of target variables (aka query variables), with X ∩ Y = Ø,

compute

=

$$p(Y \mid X = v; \theta) := p(y_1, \dots, y_J \mid x_1 = v_1, x_2 = v_2, \dots, x_M = v_M; \theta)$$

= $(p(y_1 = w_1, \dots, y_J = w_J \mid x_1 = v_1, x_2 = v_2, \dots, x_M = v_M; \theta))_{w_1, \dots, w_J}$

Variables that are neither predictor variables nor target variables are called **nuisance variables**.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Inference Without Nuisance Variables

Without nuisance variables: $V = X \dot{\cup} Y$.

$$p(Y \mid X = v; \theta) \stackrel{\text{def}}{=} \frac{p(X = v, Y; \theta)}{p(X = v; \theta)} = \frac{p(X = v, Y; \theta)}{\sum_{w} p(X = v, Y = w; \theta)}$$

- first, clamp predictors X to their observed values v,
- then, normalize $p(X = v, Y; \theta)$ to sum to 1 (over Y).
- p(X = v; θ) likelihood of the data / probability of evidence is a constant.

Note: Summation over w is over all possible values of variables Y.

Inference With Nuisance Variables

Nuisance variables: $Z := \{z_1, \ldots, z_K\} := V \setminus (X \cup Y).$

- 1. add to target variables
- 2. answer resulting query without nuisance variables: $p(Y, Z \mid X)$.
- 3. marginalize out nuisance variables:

$$p(Y \mid X = v; \theta) \stackrel{\text{marginalization}}{=} \sum_{u} p(Y, Z = u \mid X = v; \theta)$$

Note: Summation over u is over all possible values of variables Z.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Inference With Nuisance Variables

Nuisance variables: $Z := \{z_1, \ldots, z_K\} := V \setminus (X \cup Y)$.

- 1. add to target variables
- 2. answer resulting query without nuisance variables: $p(Y, Z \mid X)$.
- 3. marginalize out nuisance variables:

$$p(Y \mid X = v; \theta) \stackrel{\text{marginalization}}{=} \sum_{u} p(Y, Z = u \mid X = v; \theta)$$

Caveat: This is a naive algorithm never used in practice. See BN lecture for practically useful BN inference algorithms.

Complexity of Inference

20 / 3

- for simplicity assume
 - \blacktriangleright all M predictor variables are nominal with L levels,
 - \blacktriangleright all K nuisance variables are nominal with L levels,
 - a single target variable: $Y = \{y\}, J = 1$ also nominal with L levels.
- without (Conditional) Independencies:
 - full table p requires $L^{M+K+1} 1$ cells storage.
 - inference requires $O(L^{K+1})$ operations.
 - for each Y = w sum over all L^{K} many Z = u.
- with (Conditional) Independencies / Bayesian network:
 - CPDs p require O((M + K + 1)L^{max indegree+1}) cells storage.
 inference requires O((K + 1)L^{treewidth+1}) operations.
 - - treewidth=1 for a chain!

Note: See the Bayesian networks lecture for BN inference algorithms.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Outline

1. Introduction

- 2. Examples
- 3. Inference

4. Learning

Learning Bayesian Networks

parameter learning: given

- the structure of the network (graph G) and
- a regularization penalty $\text{Reg}(\theta)$,
- data x_1, \ldots, x_N ,

learn the **CPDs** *p*.

$\hat{\theta} := \arg \max_{\theta} \sum_{n=1}^{N} \log p(x_n; \theta) - \operatorname{Reg}(\theta)$

► structure learning: given

► data,

learn the **structure** G and the **CPDs** p.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Machine Learning

Bayesian Approach

- in the Bayesian approach, parameters are also considered to be random variables, thus,
- learning is just a special type of inference (with the parameters as targets)
- information about the distribution of the parameters before seeing the data is required (**prior distribution** $p(\theta)$)
- parameter learning: given
 - ▶ the structure of the network (graph G) and
 - a prior distribution $p(\theta)$ of the parameters,
 - data x_1, \ldots, x_N ,

learn the CPDs p.

$$\hat{\theta} := \arg \max_{\theta} \sum_{n=1}^{N} \log p(x_n; \theta) + \log p(\theta)$$

21 /

Plate Notation

- variables on plates are duplicated
 - ► the number of copies is given in the lower right corner.
- ► an **index** is used to differentiate copies of the same variable.

Example 1: data x_1, \ldots, x_N is independently identically distributed (iid)

[Murphy, 2012, fig. 10.7]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Plate Notation

- variables on plates are duplicated
 - ► the number of copies is given in the lower right corner.
- ► an **index** is used to differentiate copies of the same variable.
- variables being in several plates will be duplicated for every combination, i.e., have several indices.
 - for clarity, the index should be added to the plate (but often is omitted).

Example 2: Naive Bayes classifier.

Machine Learning

Learning from Complete Data

Likelihood decomposes w.r.t. graph structure:

$$p(\mathcal{D} \mid \theta) := \prod_{n=1}^{N} p(x_n \mid \theta)$$

= $\prod_{n=1}^{N} \prod_{m=1}^{M} p(x_{n,m} \mid x_{n,pa(m)}, \theta_m)$
= $\prod_{m=1}^{M} \prod_{n=1}^{N} p(x_{n,m} \mid x_{n,pa(m)}, \theta_m)$
= $\prod_{m=1}^{M} p(\mathcal{D}_m \mid \theta_m)$

where θ_m are the parameters of $p(x_m \mid pa(m))$

Note: In Bayesian contexts, often $p(\ldots | \theta)$ is used instead of $p(\ldots; \theta)$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Learning from Complete Data

If the prior also factorizes,

$$p(\theta) = \prod_{m=1}^{M} p(\theta_m)$$

then the posterior factorizes as well

$$p(heta \mid \mathcal{D}) \propto p(\mathcal{D} \mid heta) p(heta) = \prod_{m=1}^{M} p(\mathcal{D}_m \mid heta_m) p(heta_m)$$

and the parameters θ_m of each CPD can be estimated independently.

Note: In Bayesian contexts, often $p(\ldots | \theta)$ is used instead of $p(\ldots; \theta)$.

Learning from Complete Data / Dirichlet Prior

lf

- ► all variables are nominal,
- variable *m* has L_m levels $(m = 1, \ldots, M)$, and
- ► all CPDs are described by conditional probability tables (CPTs)

$$p(x_m \mid x_{pa(m)}) = \theta_{m,c,l}, \quad c := x_{pa(m)}, l := x_m$$

with $\sum_{l=1}^{L} \theta_{m,c,l} = 1, \quad \forall m, c$

a Dirichlet distribution for each row in the CPT

$$\theta_{m,c,\cdot} \sim \mathsf{Dir}(\alpha_{m,c}), \quad \alpha_{m,c} \in (\mathbb{R}^+_0)^{L_m}$$

is a useful prior.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Learning from Complete Data / Dirichlet Prior

Then the posterior $p(\theta_{m,c,\cdot} \mid D)$ is also Dirichlet:

$$\theta_{m,c,\cdot} \mid \mathcal{D} \sim \mathsf{Dir}(\alpha_{m,c} + N_{m,c})$$

$$N_{m,c,l} := \sum_{n=1}^{N} \delta(x_{n,m} = l, x_{n,\mathsf{pa}(m)=c})$$
with mean $\bar{\theta}_{m,c,l} = \frac{N_{m,c,l} + \alpha_{m,c,l}}{\sum_{l'=1}^{L} N_{m,c,l'} + \alpha_{m,c,l'}}$

Learning from Complete Data / Example graph structure: data:

 $p(heta_{m,c}) \coloneqq \mathsf{Dir}(1,1)$ orall m,c

learned parameters for CPT of x_4 (m = 4):

		T		/	/
0	1	0	1	1/3	2/3
1	1	2	1	3/5	2/3 2/5 [Murphy, 2012, fig. 10.1a
					[Mulphy, 2012, lig. 10.1a

 $\begin{array}{c|c} c = x_{\text{pa}(m)} & N_{m,c,l} & \bar{\theta}_{m,c,l} \\ \hline x_2 & x_3 & N_{4,c,1} & N_{4,c,0} & \bar{\theta}_{4,c,1} & \bar{\theta}_{4,c,0} \\ \hline 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ \hline \end{array}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Learning BN from Complete Data / Algorithm

- 1 learn-bn-params($\mathcal{D}^{\mathsf{train}} := \{x_1, \dots, x_N\} \subset \mathcal{X}_1 \times \dots \times \mathcal{X}_M, G, \alpha)$:
- 2 for n := 1 : N:
- 3 for m := 1 : M:
- 4 $\alpha_{m,x_{n,m},x_{n,\mathrm{pa}(m)}} += 1$
- 5 return α

where

- X_m := {1,..., L_m} discrete domains of variable X_m (having L_m different levels)
- G is a DAG on $\{1, \ldots, M\}$
- $(\alpha_{m,l,c})_{m=1:M,l=1:L_m,c\in\prod_{c\in pa(m)}L_c} \geq 0$ the Dirichlet prior of the parameters

Learning with Missing and/or Hidden Variables

Learning with

- missing values or
- hidden variables

is more complicated as

- the likelihood no longer factorizes and
- neither is convex.

 \rightsquigarrow use iterative approximation algorithms to find a local MAP or ML minimum.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Summary

- Bayesian Networks define a joint probability distribution by a factorization of conditional probability distributions (CPDs) p(x_n | pa(x_n))
 - Conditions pa(m) form a DAG.
 - ► For nominal variables, all CPDs can be represented as tables (CPTs).
 - Storage complexity is $O(L^{\max \text{ indegree}+1})$ (instead of $O(L^M)$).
- Many model classes essentially are Bayesian networks:
 - Naive Bayes classifier, Markov Models, Hidden Markov Models
- Inference in BN means to compute the (marginal joint) distribution of target variables given observed evidence of some predictor variables.
 - A Bayesian network can answer queries for arbitrary targets (not just a predefined one as most predictive models).
 - Nuisance variables (for a query) are variables neither observed nor used as targets.
 - Inference with nuisance variables can be done efficiently for DAGs with small tree width.

Summary (2/2)

- Learning BN has to distinguish between
 - parameter learning: learn just the CPDs for a given graph, vs.
 - **structure learning**: learn both, graph and CPDs.
- Parameter learning the maximum aposteriori (MAP) for BN with CPTs and Dirichlet prior can be done simply by counting the frequencies of families in the data.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Further Readings

► [Murphy, 2012, chapter 10].

Machine Learning

References

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 32