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Machine Learning 1. Principal Components Analysis
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1. Principal Components Analysis
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Machine Learning 1. Principal Components Analysis

The Dimensionality Reduction Problem

Given
» a set X called data space, e.g., X := R,
» a set X C X called data,
» a function

D: |J ®Y*-R{
XCX,KeN

called distortion where D(P) measures how bad a low dimensional
representation P : X — R¥ for a data set X C X is, and

» a number K € N of latent dimensions,

find a low dimensional representation P : X — R¥X with K dimensions with
minimal distortion D(P).
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Machine Learning 1. Principal Components Analysis

Distortions for Dimensionality Reduction (1/2) A
Let dy be a distance on X and d7 be a distance on the latent space RK
usually just the Euclidean distance

K

dz(v,w) = lv = wlla = _(vi — w)?)2

i=1

Multidimensional scaling aims to find latent representations P that
reproduce the distance measure dy as good as possible:

2

D(P) = 1mxT—T) Zx(dx (x,x') = dz(P(x), P(x')))*
XX;f
- ,,_1 ZZ(d»c xi, ) = |lzi = Zl1)? 2z == P(x)
i=1 j=1
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Machine Learning 1. Principal Components Analysis

Distortions for Dimensionality Reduction (2/2)

Feature reconstruction methods aim to find latent representations P
and reconstruction maps r : RX — X from a given class of maps that
reconstruct features as good as possible:

D(P,r) = Z dx (x, r(P(x)))
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Machine Learning 1. Principal Components Analysis

Singular Value Decomposition (SVD)

Theorem (Existence of SVD)

For every A € R"*™ there exist matrices

UeR™K Ve R™K Y .= diag(oy,...,06) € R** k:=min{n,m}
01200 2>+ 2>0,>0,41=-=0k =0, r := rank(A)
U,V orthonormal, i.e., UTU=1,VTV =1

with

A=UzVT

o; are called singular values of A.

Note: / := diag(1,...,1) € Rk*k denotes the unit matrix.
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Machine Learning 1. Principal Components Analysis aNers,
. .. NDU»
Singular Value Decomposition (SVD; 2/2) A
It holds:
a) a,-2 are eigenvalues and V; eigenvectors of AT A:

(ATAVWV: =02V, i=1,....kV=(W,..., V)
b) o2 are eigenvalues and U; eigenvectors of AAT:
(AATU; = 02U;, i=1,....k,U=(Us,...,U)
proof:
a) (ATA)WV: = VETUT UZVTV, = VX2 = 02V,
b) (AATU; = USTVT vETUTU; = US?e; = 02U

I
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Machine Learning 1. Principal Components Analysis

Truncated SVD

Let A€ R™™ and ULVT = A its SVD. Then for k' < min{n, m} the
decomposition

A% U/Z/V/T
with
U, = (U,la SR U,k’)7 V, = (\/,17 cey \/,k’)az/ = diag(al, .- '70k’)

is called truncated SVD with rank k’.
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Machine Learning 1. Principal Components Analysis

Low Rank Approximation

Let A€ R™™. For k < min{n, m}, any pair of matrices

UeR™K Ve RM¥k

is called a low rank approximation of A with rank k.

The matrix
uv’

is called the reconstruction of A by U, V and the quantity

A= UVTI[F=) > (Aij— U V)

i=1 j=1

the L2 reconstruction error.

Note: ||A||f is called Frobenius norm.
(Do not confuse this with the L2 norm || - ||2 for matrices.)
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Machine Learning 1. Principal Components Analysis

Optimal Low Rank Approximation is Truncated SVD /

Theorem (Low Rank Approximation; Eckart-Young theorem)

Let A€ R"™ ™. For k" < min{n, m}, the optimal low rank approximation
of rank k' (i.e., with smallest reconstruction error)

(U,V*):=  argmin ||[A—UVT|2
UeRnxk’ , VeRmxkK

is the truncated SVD.

Note: As U, V do not have to be orthonormal, one can take U := U'Y’, V := V/ for the
v/'T
Lsaxlgchmldt Hueme Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 1. Principal Components Analysis e

P2
Principal Components Analysis (PCA) A
Let X :={x1,...,xn} C R™ be a data set and K € N the number of
latent dimensions (K < m).

PCA finds

» K principal components vq,...,vk € R™ and

> latent weights z; € R¥ for each data point i € {1,...,n},
such that the linear combination of the principal components

K
X ~ E z,-,kvk
k=1

reconstructs the original features x; as good as possible:

arg m|n Z l|xi — Zz;7kka2

.....

77777 Zn k 1

_ZHX, Vzi|[2, V= (vi,...,vk)"
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Machine Learning 1.

PCA Algorithm

procedure

Principal Components Analysis

DIMRED-PCA(D := {x1,...,xv} C RM K € N)

X = (X1,X2, e ,X/V)T

Z:=U 1.k Xik1kK

return

Lars Schmidt-Thieme,

Machine Learning 1.

1:
2:
3: (U, %, V) :=svd(X)
4:
5

DdimrEd = {Zl,,, c e Z/\/’_}

Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Principal Components Analysis

Principal Components Analysis (Example 1)

15

1 [HTFFO5, p. 536]

T
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Principal Components Analysis (Example 2)

Lol

2333333333333

2333333333333
333335395)3%23333

2333332333393

2333335333239
2392333333335
3323333233333

3522335333553

3323333533533

3332333335333

[HTFFO5, p. 538]

Outline

2. Probabilistic PCA & Factor Analysis



Machine Learning 2. Probabilistic PCA & Factor Analysis

Probabilistic Model %

Probabilistic PCA provides a probabilistic interpretation of PCA.

It models for each data point
» a multivariate normal distributed latent factor z,

» that influences the observed variables linearly:

p(z) :=N(z,0,/)
p(x | zip, 0%, W) = N(x; pp + Wz,0°1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis e

,rv X
Probabilistic PCA Loglikelihood s !

UX,Z; p, 0%, W)

n
= Z In p(xi | zi; p, 0%, W) + In p(z)
i—1

— ZlnN(Xi;,u_'_ Wzi,01) +In N (z;0,1)

1 1
ocZ——Ioga 202( — = Wz) T (x; — p— Wz) — 5 z! z;
X — Zloga + 5 (1 Tu+zTWT Wz —2x" pn — 2XTWZ,—|—2/LTWZ,)
—l—z Zj

1
remember: N(x;p,X) = —— e~ 3 (=) T x—p).
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Machine Learning 2. Probabilistic PCA & Factor Analysis

PCA vs Probabilistic PCA 85

UX,Z; p, 0%, W)
1

1 1
X Z —5 log 0% — F(X; — - Wz,-)T(x,- —u— Wz) — 2Tz

» as PCA: Decompose with minimal L2 loss

K
Xi & b+ Zzi,ka
k=1
with v, == W.
» different from PCA: L2 regularized row features z.

» cannot be solved by SVD. Use EM as learning algorithm!

» additionally also regularization of column features W possible
(through a prior on W).
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Machine Learning 2. Probabilistic PCA & Factor Analysis -
. . N
EM / Block Coordinate Descent: Outline A

UX,Z; p, 0%, W)

1
x — Z log o? + ?(MT,LL +zI WT Wz — 2x" i — 2x" Wz; + 2" Wz;)

-
+ z; z;

1. expectation step: Vi

g—fl_éo —zi=.. (0)
2. minimization step:

g—iéo - = (1)

%éo —o? = (2)

%éo - W= (3)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

v
EM / Block Coordinate Descent A

UX,Z; p, 0%, W)

1
xX — Z log o2 + ;(/,LTIM +zI WT Wz — 2xT i — 2x" Wz + 2/,LTWZ,'%_
i + z; z;

1
% = =S zTWTW — 2T W+ 2uT W) — 227 £0
(WTW + 621 zj = W (x; — 1)
zi=(W'W +a*) W (xi — ) (0)

ov 1
@ — —? ZzlLLT — 2XiT —|— 2ZI'TWT ; O

Note: As E(z) oiulo@i%ﬁx_edmyz% =1 x. (1)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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EM / Block Coordinate Descent: Summary A

alternate until convergence:

1. expectation step: Vi

zi = (WTW + 02 "W (x5 — p) (0)
2. minimization step:

1
- - i W. i 1
"2 X z (1)

o 1 T

ot =) (i —p—Wz) (x —p— Wz) (2)
W=> (xi—wz O _ziz')™ (3)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Probabilistic PCA Algorithm (EM)

1: procedure DIMRED-PPCA(D := {x1,...,xn} C RM K € N,e € R")
2 allocate z1,...,zy =0 € R u:=0eR” W :=0 e RV** s> :=1€R
3 repeat

4. ol =02, =2z

5: forn:=1,...,N do

6: zy = (WTW + )W (x, — 1)

7 Hold = [

3 po= o 3o xi — Wz

9: 0% =13 (xi — poid — Wzi) T (xi — pols — Wz)

10: W= (x — poi)z (3227 ) 7"

11: until + SNz — 299 < e

12: return D™ = L7 zy)
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EM / Block Coordinate Descent: Example

—2

0 2

[Bis06, p. 581]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Regularization of Column Features W

p(W) = [[N(w;;0,771), W =(w,...,wp)
j=1

m
1
2 T
j=1 J

oY 1 1
— = ... — Wdiag(—,..., >
BT, Iag(le, ,Tr%)
1 1
W = i — T ,'-T 2diag(—,...,—=))! 3/
Z(X )z, (Eiﬁzz, +o lag(Tf, =N e)
ol 1 1 |
e K= —— T =
a7, 21 et =0
1
= (4)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Bayesian PCA: Example

[Bis06, p. 584]
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Machine Learning 2. Probabilistic PCA & Factor Analysis

Factor Analysis

p(z) :=N(z0,/)
p(x |z pu, L, W) :=N(x;u+ Wz, X), X diagonal

UX, Z; pu, X, W)
x Z 1 log |X| — 1(x — = Wz) T o — p— Wzp) — 1z-Tz-
i 2 2 I I 1 I I

2 )
EM:
zi=(WTEstW + DW= x — p) (0')
1

= — P — W. i 1

p=- ZX z (1)

_ 1 2 /
Note: See ap%e’.nliix_fogcz:gtﬁé(rin of élN/I ?ormé{'gf) (2 )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Outline A

3. Non-linear Dimensionality Reduction
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Machine Learning 3. Non-linear Dimensionality Reduction

11

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:
1. compute lower dimensional representations for given data points x;
» for PCA:

Ui:Z_l\/TX,', U:: (Ul,...,Un)T

2. compute lower dimensional representations for new data points x
(often called “fold in")
» for PCA:

u:=argmin||x — VZul? =LV x
u

PCA is called a linear dimensionality reduction technique because the
latent representations u depend linearly on the observed representations x.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

Kernel Trick

Represent (conceptionally) non-linearity by linearity in a higher
dimensional embedding

¢ R™ - R™

but compute in lower dimensionality for methods that depend on x only
through a scalar product

%70 = ¢(x)T¢(0) = k(x,0), x,0 €R™

if k can be computed without explicitly computing ¢.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

Kernel Trick / Example

Example:
1
¢ : R — R ( 31.62 x \
( 1000 )% i 706.75 x2
X — i X — :
i=0,...,1000 :
31.62 x999
XlOOO )
) 1000 /4000 o
%70 =p(x)Te(0) =) ( I_ ) x'0" = (1 + x60)1°% =: k(x, 6)

i=0
Naive computation:
» 2002 binomial coefficients, 3003 multiplications, 1000 additions.
Kernel computation:
» 1 multiplication, 1 addition, 1 exponentiation.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Kernel PCA A

¢ R™ - R™  m>m

d(x1)
5. ¢(?<2)

o(xn)
X ~UsVv’

We can compute the columns of U as eigenvectors of XX T e R"*"
without having to compute V € R™*k (which is large!):

)~<)~<TU,' = U,-2Ui

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

Kernel PCA / Removing the Mean A

Issue 1: The X; := ¢(x;) may not have zero mean and thus distort PCA.

n
ol . 1Z~
X; =Xj — — Xj
n <
i=1

1

=XT(I - =1

(= —1)

N _ B 1 -
X“:@LHWXJTZ(L—ZMXT

. 1
K =X'X'"T = (/——mXT (1 —=1)
n
1
=HKH, H :=(/ — —1) centering matrix
n

Thus, the kernel matrix K’ with means removed can be computed from

the kernel matrix K without having to access coordinates.
Note: I := (1);=1,...,nj=1,...,n Vector of ones,

I := (60 =J))i= = ni
Lars Sc&éﬂgdt—TPﬁgg{E*hfﬁr’rﬂdﬁb%’Sys@er%s atd maac ine’Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

NS
Kernel PCA / Fold In 8

Issue 2: How to compute projections u of new points x (as V is not
computed)?

u:=argmin||x — VXu|? =271V x

u
With

Vv

XTur?!
S Tx =215 WU T Xx = 20T (k(xi, X))i=1....n

u can be computed with access to kernel values only (and to U, ¥).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Non-linear Dimensionality Reduction

Kernel PCA / Summary %
Given:

» data set X := {x1,...,xp} CR™,

» kernel function k : R™ x R™ — R.

task 1: Learn latent representations U of data set X:

K :=(k(xi,Xj))i=1,...nj=1,....n (0)
1
K =HKH, H:=(—~1) (1)
n
(U, X) :=eigen decomposition K'U = UX (2)

task 2: Learn latent representation u of new point x:
U= Z_2UT(k(Xi,X))i:1,...,n (3)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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3 v e ;_.
Kernel PCA: Example 1 A

Eigenvalue=22.558 Eigenvalue=20.936 Eigenvalue=4.648 Eigenvalue=3.988
1.5 1.5 1.5 1.5

0 0
-0.5 -0.5
-1 0 1 -
Eigenvalue=3.372 Eigenvalue=2.956 Eigenvalue=2.760 Eigenvalue=2.211
1.5 1.5
1 1
.-‘;’o‘
0.5 0.5 e
R
0 . el 0 -:.'3
2 :
-0.5 = -0.5
-1 0 1 - 0 1

[Murl2, p. 493]
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Machine Learning 3. Non-linear Dimensionality Reduction

Kernel PCA: Example 2 A

pca
0.61—3
xx 3 x
0.4 %X x X ® E
x xxx x Ry ® "
% WX x%
02 X % ¥ % ® g
¥ % W 5
x % x %%
| ey
*x X &
% 3
-0.2f g
SR
—0.4F x X o g
xX “*’” X %
nX x
-06F * g
% “oa oz 0 0z 0a 06 08
kpca
0.6 ‘
0.4
®
Mty a“’e‘a‘ [Murl2, p. 495]
0.2 ” *’
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Outline

4. Supervised Dimensionality Reduction
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Machine Learning 4. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing

Given a prediction task and
a data set D™ := {(x1,y1),---, (Xn, ¥n)} CR™ x ).

1. compute latent features z; € R¥ for the objects of a data set by
means of dimensionality reduction of the predictors x;.

» e.g., using PCAon {x1,...,x,} CR™

2. learn a prediction model
7R 5 Y
on the latent features based on

D/train — {(217)/1), c ey (an)/n)}

3. treat the number K of latent dimensions as hyperparameter.
» e.g., find using grid search.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing

Advantages:

» simple procedure

» generic procedure
» works with any dimensionality reduction method and any prediction
method as component methods.

» usually fast

Disadvantages:

» dimensionality reduction is unsupervised, i.e., not informed about
the target that should be predicted later on.

» leads to the very same latent features regardless of the prediction task.
> likely not the best task-specific features are extracted.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

V
Supervised PCA A

p(z) == N(z:0,1)
p(x | z; pix, 02, Wy) := N(x; pix + Wiz, 021)
p(y | z; py, 05, Wy) == N(y: py + Wy z,0,1)

» like two PCAs, coupled by shared latent features z:

» one for the predictors x.
» one for the targets y.

» |atent features act as information bottleneck.

» also known as Latent Factor Regression or Bayesian Factor
Regression.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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;‘v ;_.
Supervised PCA: Discriminative Likelihood A

A simple likelihood would put the same weight on
» reconstructing the predictors and

» reconstructing the targets.

A weight a € ]Rar for the reconstruction error of the predictors should be
introduced (discriminative likelihood):

Lo(©;x,y,2) .= | [ p(yi | zi:©)p(xi | zi; ©)*p(zi; ©)
i=1

« can be treated as hyperparameter and found by grid search.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Supervised Dimensionality Reduction

Supervised PCA: EM .

» The M-steps for ji,, 02, W, and ,uy,af,, W, are exactly as before.
» the coupled E-step is:

1 1 171 1
zi = ( — W, W, +a—WTW) ( =W, (yi — py) + a5 W, (x —
oy o2 oy o2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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)

38

Conclusion (1234/4) A

» Dimensionality reduction aims to find a lower dimensional
representation of data that preserves the information as much as
possible. — " Preserving information” means

» to preserve pairwise distances between objects
(multidimensional scaling).

» to be able to reconstruct the original object features
(feature reconstruction).

» The truncated Singular Value Decomposition (SVD) provides the
best low rank factorization of a matrix in two factor matrices.
» SVD is usually computed by an algebraic factorization method
(such as QR decomposition).

» Principal components analysis (PCA) finds latent object features
and latent variable features that provide the best linear
reconstruction (in L2 error).

» PCA is a truncated SVD of the data matrix.

-~ No_L_L%M_ 2" N/A /(DDA 2o P R SR - T TSP NP T-E R &
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISI\/ILL) Unlver5|ty of Hildesheim, Germany
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Machine Learning

Readings

» Principal Components Analysis (PCA)
» [HTFFO5], ch. 14.5.1, [Bis06], ch. 12.1, [Murl2], ch. 12.2.

» Probabilistic PCA
> [Bis06], ch. 12.2, [Murl2], ch. 12.2.4.

» Factor Analysis
> [HTFFO5], ch. 14.7.1, [Bis06], ch. 12.2.4.

» Kernel PCA
» [HTFFO05], ch. 14.5.4, [Bis06], ch. 12.3, [Murl2], ch. 14.4.4,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Further Readings

» (Non-negative) Matrix Factorization
> [HTFFO5], ch. 14.6

» Independent Component Analysis, Exploratory Projection Pursuit
» [HTFFO5], ch. 14.7 [Bis06], ch. 12.4 [Murl2], ch. 12.6.

» Nonlinear Dimensionality Reduction
» [HTFFO05], ch. 14.9, [Bis06], ch. 12.4

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning

Factor Analysis: Loglikelihood

WX, Z; pu, X, W)

n
= Inp(x | z;pp, L, W)+ In p(2)
i=1

=Y InN(x;p+ Wz, X) + InN (20, 1)

1 1 1
mZ—Elog\Z\—E(x;—u— Wz) T (x; — p — Wz) — 5 z! z;
x — Zlog]Z\—l—( Iy i+ s+ 2T Wit Wz — 2x" sy
—2XTZ YWz + 2 571 WZ,)—I—Z Z

remember: N (x;p,X) = —L1—re~ ST e p),
Lars Schmidt-Thieme, Information %ggen)s 41 A%\/Iachlne Learning Lab (ISMLL), University of Hildesheim, Germany
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. . N
Factor Analysis: EM / Block Coordinate Descent A

UX, Z; pu, X, W)
X — Zlog]Z\—l—( Ty i+ 0"+ 2T Wt Wz — 2x "y
—2XTZ YWz + 27571 WZ,)—I—Z Z

ot _
82,- a

(WIE W4+ Nzi=WTEs Y x — p)
=W W+ nN"TwTr (x5 — p)

—Qz"TWTrtw —2x" wx=t 2Ty tw) — 227

ol _ _ 1!
5=~ § o't oIyt 2 T wis Tt =0
v :
Note: As E(z) =D, ften is fix d top =1 X; -
()= Doxpofien s fgd to o= 5 2ix (1"
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|\/|atr|X Trace A
The function tr - U R™" v R
neN

n
A tr(A) = Z aj i
i=1

Is called matrix trace. It holds:

a) invariance under permutations of factors:
tr(AB) = tr(BA)

b) invariance under basis change:
tr(B~1AB) = tr(A)

a) tr(AB) = Z ZAi’ij’i = Z Z B,',J'Aj’,' = tr(BA)
J J

proof:

b) tr(B~*AB) = tr(BB~1A) = tr(A)
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Frobenius Norm
The function || .|| : U R™M Rar
n,meN h m 5\ 1
A= |AllF = (Zzai,j)2
i=1 j=1
is called Frobenius norm. It holds:
a) trace representation:
1
1AllF = (tr(AT A))2
b) invariance under orthonormal transformations:
tr(UAVT) = tr(A), U, V orthonormal

a) tr(ATA) = ZZAJ’A i =Allz

b) ||[UAV||2 = tr(VATUTUAvT) =tr(VATAVT)
=tr(ATAVT V) = tr(AT A) = ||A||%
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Sy
Frobenius Norm (2/2) A

c) representation as sum of squared singular values:

min{m,n}
[Allp=»  of
=1

proof:
c)let A= ULV the SVD of A

min{m,n}

Al = IVEVTlle = Il = u(x7E) = ) of
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