In class exercises for CW 43

The idea of matrix calculus is to write down the partial derivatives of multivariate/multivalued functions into a matrix grid. This notation gives rise to a powerful chain rule which simplifies many calculations. However there is a caveat: two competing systems are in wide spread use. For a vector to vector function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ some people prefer to work the Jacobian, others with the gradient.

$$
\begin{array}{lll}
\text { Numerator layout } & \left(\frac{\partial f}{\partial x}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}} & \text { "Jacobian way" } \\
\text { Denominator layout } & \left(\frac{\partial f}{\partial x}\right)_{i j}=\frac{\partial f_{j}}{\partial x_{i}} & \text { "Gradient way" } \\
\hline
\end{array}
$$

For the purpose of this exercise we will stick to the denominator layout

The base definition can be extended to the case of matrix-valued functions of one variable and matrix dependent scalar functions:

Definition 1. Consider functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x \mapsto f(x)$ (vector to vector), $Y: \mathbb{R} \rightarrow \mathbb{R}^{m \times n}, t \mapsto Y(t)$ (scalar to matrix) and $\phi: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}, X \mapsto \phi(X)$ (matrix to scalar). The denominator convention consists of the following convections:

$$
\frac{\partial f}{\partial x}=\left(\begin{array}{lll}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{1}}{\partial x_{n}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)
$$

$$
\frac{\partial Y}{\partial t}=\left(\begin{array}{lll}
\frac{\partial Y_{11}}{\partial t} & \cdots & \frac{\partial Y_{1 n}}{\partial t} \\
\vdots & \ddots & \vdots \\
\frac{\partial Y_{m 1}}{\partial t} & \cdots & \frac{\partial Y_{m n}}{\partial t}
\end{array}\right)
$$

$$
\frac{\partial \phi}{\partial X}=\left(\begin{array}{lll}
\frac{\partial \phi}{\partial X_{11}} & \cdots & \frac{\partial \phi}{\partial X_{1 n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \phi}{\partial X_{m 1}} & \cdots & \frac{\partial \phi}{\partial X_{m n}}
\end{array}\right)
$$

Remark 2. Using matrix calculus we can write down the following derivatives in concise form:

$x \backslash f$	scalar	vector	matrix
scalar	\checkmark	\checkmark	\checkmark
vector	\checkmark	\checkmark	\times
matrix	\checkmark	\times	\times

The missing ones would require to write the entries not in a matrix, but in higher dimensional analogues (tensors).

Theorem 3 (Chain Rule for denominator layout).

$$
\begin{align*}
& \frac{\partial(f \circ g)}{\partial x}=\frac{\partial g}{\partial x} \cdot \frac{\partial(f \circ g)}{\partial g} \tag{1}
\end{align*}
$$

Note: In the case 'scalar by matrix' the order is swapped: $\frac{\partial(f \circ g)}{\partial X}=\frac{\partial(f \circ g)}{\partial g} \cdot \frac{\partial g}{\partial X}$. If numerator layout is used instead, the order is always $\frac{\partial(f \circ g)}{\partial x}=\frac{\partial(f \circ g)}{\partial g} \cdot \frac{\partial g}{\partial x}$. ${ }^{1}$

Exercise 4. Assume $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ what are dims. of $\frac{\partial(f \circ g)}{\partial x}, \frac{\partial g}{\partial x}$ and $\frac{\partial f \circ g}{\partial g}$?

The chain rule is in some sense the most important differentiation rule, since all other differentiation rules can be derived from it.

Example 5. The one dimensional product rule is $\frac{\partial}{\partial x}(u v)=u^{\prime} v+v^{\prime} u$. Proof:

$$
\underset{f \circ g}{\searrow} \stackrel{g}{\searrow}{\underset{u v}{f}}_{\substack{u \\
v}}^{f} \quad \frac{\partial(f \circ g)}{\partial x}=\frac{\partial g}{\partial x} \cdot \frac{\partial(f \circ g)}{\partial g}=\left(\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right) \cdot\binom{v}{u}=u^{\prime} v+v^{\prime} u
$$

Exercise 6 (scalar by vector). Let $a, x \in \mathbb{R}^{n}$ and $u, v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be functions of x

- $\frac{\partial}{\partial x}\left(a^{\top} x\right)$ and $\frac{\partial}{\partial x}\left(x^{\top} a\right)$ (sol: a and $\left.a\right)$
- Show that $\frac{\partial}{\partial x}\left(u^{\top} v\right)=\frac{\partial u}{\partial x} v+\frac{\partial v}{\partial x} u$ (scalar product rule)
- Compute $\frac{\partial}{\partial x}\|x\|_{2}^{2}$ (sol: $2 x$)

Exercise 7 (vector by vector).

- $\frac{\partial}{\partial x}(A x)$ and $\frac{\partial}{\partial y}\left(y^{\top} A\right)$ (sol: A^{\top} and sol: A)
- $\frac{\partial}{\partial x} \frac{1}{2}\|y-A x\|_{2}^{2}\left(\mathrm{sol}: A^{\top} A x-A^{\top} y\right)$

Exercise 8 (scalar by matrix). Let $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$ and $\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}$

- Compute $\frac{\partial}{\partial A} y^{\boldsymbol{\top}} A x$ (sol: $y x^{\boldsymbol{\top}}$)
- Compute $\frac{\partial}{\partial A} \phi(A x)$ (sol: $\nabla \phi[A x] \cdot x^{\top}$) (Hint: This exercise goes beyond what matrix calculus is able to handle. After applying the chain rule the derivative $\frac{\partial A x}{\partial A}$ arises which is of type vector-by-matrix. Fundamentally it would need to represented by a 3 -dimensional tensor. We can bypass this issue by writing $A x=\sum_{i}\left(e_{i}^{\top} A x\right) e_{i}$ and form the derivative component wise.)

[^0]
Literature Recommendation

Basic multivariate calculus can be found in almost any appropriate undergraduate text. Two on-line sources that summarize vectorized multivariate calculus and can be used to look up formulas are:

- Wikipedia page on Matrix Calculus ${ }^{2}$
- Matrix Cookbook ${ }^{3}$

[^1]
[^0]: ${ }^{1}$ This can be seen as a fundamental flaw of the denominator convention. To fix it one would have to redefine $\left(\frac{\partial f}{\partial X}\right)_{i j}=\frac{\partial f}{\partial X_{j i}}$, which is counter-intuitive.

[^1]: ${ }^{2}$ https://en.wikipedia.org/wiki/Matrix_calculus
 ${ }^{3}$ https://www.math.uwaterloo.ca/ ~hwolkowi/matrixcookbook.pdf

