In class exercises for CW 44

1 Review Calculus

Definition 1 (Hessian). The **Hessian** of a scalar function $f \colon \mathbb{R}^n \to \mathbb{R}$ is defined as:

$$\mathbf{H}f = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{ij} \tag{1}$$

Fact: If the second partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_j}$ are all continuous, then $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$ for all i, j. In this case the Hessian is **symmetric**. We will always assume that this is the cfase if not explicitly stated otherwise.

Remark 2. Note that the Hessian is equal to the gradient of the gradient:

$$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} f \right) = \frac{\partial}{\partial x} \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdot & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdot & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdot & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix} = \mathbf{H} f$$

Theorem 3 (Taylor's theorem). If $f : \mathbb{R}^n \to \mathbb{R}$ is two times continuously differentiable then

$$f(x) \approx f(x^*) + \nabla f[x^*]^{\mathsf{T}}(x - x^*) + \frac{1}{2}(x - x^*)^{\mathsf{T}} \mathrm{H}f[x^*](x - x^*)$$
(2)

for $x \approx x^*$. (In fact it is an **asymptotic** relationship, i.e. the approximation becomes better the closer x is to x^*)

Exercise 4. Compute the second order Taylor approx. of $\exp\left(-\frac{1}{2}(x_1^2 + x_2^2)\right)$ at $x^* = 0$ **Exercise 5.** Compute the second order Taylor approx. of $\frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$ at $x_0 = 0$.

Definition 6 (symmetric part). Any square matrix $A \in \mathbb{R}^{n \times n}$ can be decomposed **uniquely** into the sum of a symmetric $(A_{+}^{\mathsf{T}} = A_{+})$ and an anti-symmetric matrix $(A_{-}^{\mathsf{T}} = -A_{-})$.

$$A = A_{+} + A_{-}$$
 $A_{+} = \frac{1}{2}(A + A^{\mathsf{T}})$ $A_{-} = \frac{1}{2}(A - A^{\mathsf{T}})$

 A_+ and A_- are called the symmetric and anti-symmetric part of A.

Exercise 7. Given a square matrix A show that for all x holds $x^{\mathsf{T}}Ax = x^{\mathsf{T}}A_{+}x$. What does this mean for the result of Exercise 5?

Exercise 8. Show that the decomposition is indeed unique, i.e. if A = B + C where B is symmetric and C is anti-symmetric, then $B = A_+$ and $C = A_-$.

Prof. Dr. Dr. Lars Schmidt-Thieme

Definition 9 (positive/negative definite). For a square matrix $A \in \mathbb{R}^{n \times n}$ define

 $\begin{array}{lll} A \text{ is pos. def.} & (A > 0) & \stackrel{\text{def.}}{\Longrightarrow} x^{\mathsf{T}}Ax > 0 \text{ for all } x \iff \text{ all EV of } A_+ \text{ are } > 0 \\ A \text{ is neg. def.} & (A < 0) & \stackrel{\text{def.}}{\Longrightarrow} x^{\mathsf{T}}Ax < 0 \text{ for all } x \iff \text{ all EV of } A_+ \text{ are } < 0 \\ A \text{ is pos. semi-def.} & (A \ge 0) & \stackrel{\text{def.}}{\Longrightarrow} x^{\mathsf{T}}Ax \ge 0 \text{ for all } x \iff \text{ all EV of } A_+ \text{ are } \ge 0 \\ A \text{ is neg. semi-def.} & (A \le 0) & \stackrel{\text{def.}}{\Longrightarrow} x^{\mathsf{T}}Ax \le 0 \text{ for all } x \iff \text{ all EV of } A_+ \text{ are } \ge 0 \\ A \text{ is neg. semi-def.} & (A \le 0) & \stackrel{\text{def.}}{\Longrightarrow} x^{\mathsf{T}}Ax \le 0 \text{ for all } x \iff \text{ all EV of } A_+ \text{ are } \le 0 \\ \end{array}$

Exercise 10. For which $\alpha \in \mathbb{R}$ is $A = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$ positive definite ?

2 Review Optimization

In machine learning we often want to fit a model to a given dataset. It is therefore important to study non-linear optimization problems. For example for given data x, y we may want to find good parameters θ such a model $\hat{y}(x) = f(x, \theta)$ fits the data well. This leads to an optimization problem.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} \ell(y, \hat{y}) \tag{3}$$

where ℓ , the so called **loss**-function is a measure of how good the model fits the data. Oftentimes a model comes with additional restrictions, for example a parameter might be restricted to certain values or forbidden to become negative. A very general mathematical framework to deal with such problems is called **non-linear programming** which deals with the following optimization problem:

$$\min_{x} f(x) \quad \text{such that} \quad g(x) = 0 \text{ and } h(x) \ge 0 \tag{4}$$

We will now discuss some fundamental terminology related to this problem.

Theorem 11 (first order necessary condition). If $f : \mathbb{R}^n \to \mathbb{R}$ is cont. diff. then

$$x^*$$
 is a local extremum $\implies \nabla f(x^*) = 0$

Exercise 12.

- Find all local extrema of $x^4 2x^2 + 3$
- Show that the converse (" \Leftarrow ") does not hold in general by giving an example.

Theorem 13 (second order necessary condition). If $f \colon \mathbb{R}^n \to \mathbb{R}$ is twice cont. diff. then

x is a local minimum $\implies \nabla f[x] = 0$ and $\mathrm{H}f[x] \ge 0$ x is a local maximum $\implies \nabla f[x] = 0$ and $\mathrm{H}f[x] \le 0$

Theorem 14 (second order sufficient condition). The reverse of Theorem 13 holds if Hf is strictly pos./neg. definite:

 $\nabla f[x] = 0$ and $\mathrm{H}f[x] > 0 \implies x$ is a local minimum $\nabla f[x] = 0$ and $\mathrm{H}f[x] < 0 \implies x$ is a local maximum

Exercise 15.

- Show that $f(x) = e^x x$ has a local minimum at x = 0
- Show that the converse (" \Leftarrow ") does not hold in general by giving an example.

Definition 16 (convex function). A continuous function $f \colon \mathbb{R}^n \to \mathbb{R}$ is called:

f	convex	$\stackrel{\mathrm{def}}{\Longleftrightarrow}$	f(tx + (1	(-t)y)	$\leq tf(x)$	+(1-t)f(y)	for	all $t \in$	(0,1)	and a	x, y
f	strictly convex	$\stackrel{\mathrm{def}}{\Longleftrightarrow}$	f(tx + (1	(-t)y)	< tf(x)	+(1-t)f(y)	for	all $t \in$	(0,1)	and a	x, y
f	concave	$\stackrel{\mathrm{def}}{\Longleftrightarrow}$	f(tx + (1	(-t)y)	$\geq tf(x)$	+(1-t)f(y)	for	all $t \in$	(0,1)	and a	x, y
f	strictly concave	$\stackrel{\mathrm{def}}{\Longleftrightarrow}$	f(tx + (1	(-t)y)	> tf(x)	+(1-t)f(y)	for	all $t \in$	(0,1)	and a	x, y

Theorem 17 (convexity criterion). If $f: \mathbb{R}^n \to \mathbb{R}$ is one/two times cont. diff. then

 $\begin{array}{lll} f \ \text{convex} & \Longleftrightarrow \ f(x) \geq f(y) + \nabla f[y]^\intercal(x-y) \ \text{for all} \ x,y \ \Longleftrightarrow \ \mathrm{H}f[x] \geq 0 \ \text{for all} \ x \\ f \ \text{strictly convex} & \Leftrightarrow \ f(x) > f(y) + \nabla f[y]^\intercal(x-y) \ \text{for all} \ x,y \ \Longleftrightarrow \ \mathrm{H}f[x] > 0 \ \text{for all} \ x \\ f \ \text{concave} & \Leftrightarrow \ f(x) \leq f(y) + \nabla f[y]^\intercal(x-y) \ \text{for all} \ x,y \ \Longleftrightarrow \ \mathrm{H}f[x] \leq 0 \ \text{for all} \ x \\ f \ \text{strictly concave} \ \Longleftrightarrow \ f(x) < f(y) + \nabla f[y]^\intercal(x-y) \ \text{for all} \ x,y \ \Longleftrightarrow \ \mathrm{H}f[x] \leq 0 \ \text{for all} \ x \\ f \ \text{strictly concave} \ \Longleftrightarrow \ f(x) < f(y) + \nabla f[y]^\intercal(x-y) \ \text{for all} \ x,y \ \Longleftrightarrow \ \mathrm{H}f[x] < 0 \ \text{for all} \ x \\ \end{array}$

Remark 18. To give some intuition on what the statements in Theorem 17 mean:

- 1. If one takes two points x, y and draws the straight line connecting (x, f(x)) and (y, f(y)), then the graph of f is always below/above that line.
- 2. The graph of f is always above/below any of its tangent lines (or planes/hyperplanes in the multidimensional setting).
- 3. The graph of f always 'curves' upwards/downwards in any direction.

Theorem 19. If f is strictly convex/concave then any local min/max is a global min/max. Exercise 20

Exercise 20.

- Show that $x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$ is strictly convex if and only if $A_+ > 0$.
- Show that the sum of two convex functions is convex
- Let $f, g: \mathbb{R} \to \mathbb{R}$ be two times cont. diff. Show that if f, g are convex and f is non-decreasing then $f \circ g$ is also convex

Theorem 21 (Lagrange multiplier). Consider the constrained optimization problem

$$\max_{x} f(x) \quad such \ that \quad g(x) = 0 \tag{5}$$

Then if x^* is an optimal value, there exists a λ^* such that (x^*, λ^*) is a stationary point of the Lagrangian

3/**4**

$$\mathcal{L}(x,\lambda) = f(x) - \lambda g(x) \tag{6}$$

(Note: A stationary point is a point at which the gradient is zero.)

Exercise 22. Show that the optimal value of the constrained problem

$$\max_{x} \|Ax\|_{2}^{2} \quad \text{such that} \quad \|x\|_{2}^{2} = 1 \tag{7}$$

is obtained when x is an eigenvector corresponding to the largest eigenvalue of $A^{\intercal}A$.