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In class exercises for CW 44

1 Review Calculus

Definition 1 (Hessian). The Hessian of a scalar function f : Rn → R is defined as:

Hf =

(
∂2f

∂xi∂xj

)
ij

(1)

Fact: If the second partial derivatives ∂2f
∂xi∂xj

are all continuous, then ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

for
all i, j. In this case the Hessian is symmetric. We will always assume that this is the
cfase if not explicitly stated otherwise.

Remark 2. Note that the Hessian is equal to the gradient of the gradient:
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Theorem 3 (Taylor’s theorem). If f : Rn → R is two times continuously differentiable
then

f(x) ≈ f(x∗) +∇f [x∗]ᵀ(x− x∗) + 1

2
(x− x∗)ᵀHf [x∗](x− x∗) (2)

for x ≈ x∗. (In fact it is an asymptotic relationship, i.e. the approximation becomes
better the closer x is to x∗)

Exercise 4. Compute the second order Taylor approx. of exp
(
−1

2(x
2
1 + x22)

)
at x∗ = 0

Exercise 5. Compute the second order Taylor approx. of 1
2x

ᵀAx+ bᵀx+ c at x0 = 0.

Definition 6 (symmetric part). Any square matrix A ∈ Rn×n can be decomposed
uniquely into the sum of a symmetric (Aᵀ

+ = A+) and an anti-symmetric matrix
(Aᵀ

− = −A−).

A = A+ +A− A+ =
1

2
(A+Aᵀ) A− =

1

2
(A−Aᵀ)

A+ and A− are called the symmetric and anti-symmetric part of A.

Exercise 7. Given a square matrix A show that for all x holds xᵀAx = xᵀA+x. What
does this mean for the result of Exercise 5?

Exercise 8. Show that the decomposition is indeed unique, i.e. if A = B + C where B
is symmetric and C is anti-symmetric, then B = A+ and C = A−.
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Definition 9 (positive/negative definite). For a square matrix A ∈ Rn×n define

A is pos. def. (A > 0) def⇐⇒ xᵀAx > 0 for all x ⇐⇒ all EV of A+ are > 0

A is neg. def. (A < 0) def⇐⇒ xᵀAx < 0 for all x ⇐⇒ all EV of A+ are < 0

A is pos. semi-def. (A ≥ 0) def⇐⇒ xᵀAx ≥ 0 for all x ⇐⇒ all EV of A+ are ≥ 0

A is neg. semi-def. (A ≤ 0) def⇐⇒ xᵀAx ≤ 0 for all x ⇐⇒ all EV of A+ are ≤ 0

Exercise 10. For which α ∈ R is A =

[
1 α
0 1

]
positive definite ?

2 Review Optimization

In machine learning we often want to fit a model to a given dataset. It is therefore
important to study non-linear optimization problems. For example for given data x, y we
may want to find good parameters θ such a model ŷ(x) = f(x, θ) fits the data well. This
leads to an optimization problem.

θ̂ = argmin
θ

`(y, ŷ) (3)

where `, the so called loss-function is a measure of how good the model fits the data.
Oftentimes a model comes with additional restrictions, for example a parameter might be
restricted to certain values or forbidden to become negative. A very general mathematical
framework to deal with such problems is called non-linear programming which deals
with the following optimization problem:

min
x
f(x) such that g(x) = 0 and h(x) ≥ 0 (4)

We will now discuss some fundamental terminology related to this problem.

Theorem 11 (first order necessary condition). If f : Rn → R is cont. diff. then

x∗ is a local extremum =⇒ ∇f(x∗) = 0

Exercise 12.

• Find all local extrema of x4 − 2x2 + 3

• Show that the converse ("⇐= ") does not hold in general by giving an example.

Theorem 13 (second order necessary condition). If f : Rn → R is twice cont. diff. then

x is a local minimum =⇒ ∇f [x] = 0 and Hf [x] ≥ 0
x is a local maximum =⇒ ∇f [x] = 0 and Hf [x] ≤ 0

Theorem 14 (second order sufficient condition). The reverse of Theorem 13 holds if Hf
is strictly pos./neg. definite:

∇f [x] = 0 and Hf [x] > 0 =⇒ x is a local minimum
∇f [x] = 0 and Hf [x] < 0 =⇒ x is a local maximum
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Exercise 15.

• Show that f(x) = ex − x has a local minimum at x = 0

• Show that the converse ("⇐= ") does not hold in general by giving an example.

Definition 16 (convex function). A continuous function f : Rn → R is called:

f convex def⇐⇒ f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all t ∈ (0, 1) and x, y
f strictly convex def⇐⇒ f(tx+ (1− t)y) < tf(x) + (1− t)f(y) for all t ∈ (0, 1) and x, y
f concave def⇐⇒ f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y) for all t ∈ (0, 1) and x, y
f strictly concave def⇐⇒ f(tx+ (1− t)y) > tf(x) + (1− t)f(y) for all t ∈ (0, 1) and x, y

Theorem 17 (convexity criterion). If f : Rn → R is one/two times cont. diff. then

f convex ⇐⇒ f(x) ≥ f(y) +∇f [y]ᵀ(x− y) for all x, y ⇐⇒ Hf [x] ≥ 0 for all x
f strictly convex ⇐⇒ f(x) > f(y) +∇f [y]ᵀ(x− y) for all x, y ⇐⇒ Hf [x] > 0 for all x
f concave ⇐⇒ f(x) ≤ f(y) +∇f [y]ᵀ(x− y) for all x, y ⇐⇒ Hf [x] ≤ 0 for all x
f strictly concave⇐⇒ f(x) < f(y) +∇f [y]ᵀ(x− y) for all x, y ⇐⇒ Hf [x] < 0 for all x

Remark 18. To give some intuition on what the statements in Theorem 17 mean:

1. If one takes two points x, y and draws the straight line connecting (x, f(x)) and
(y, f(y)), then the graph of of f is always below/above that line.

2. The graph of f is always above/below any of its tangent lines (or planes/hyperplanes
in the multidimensional setting).

3. The graph of f always ’curves’ upwards/downwards in any direction.

Theorem 19. If f is strictly convex/concave then any local min/max is a global min/max.

Exercise 20.

• Show that xᵀAx+ bᵀx+ c is strictly convex if and only if A+ > 0.

• Show that the sum of two convex functions is convex

• Let f, g : R → R be two times cont. diff. Show that if f, g are convex and f is
non-decreasing then f ◦ g is also convex

Theorem 21 (Lagrange multiplier). Consider the constrained optimization problem

max
x

f(x) such that g(x) = 0 (5)

Then if x∗ is an optimal value, there exists a λ∗ such that (x∗, λ∗) is a stationary point of
the Lagrangian

L(x, λ) = f(x)− λg(x) (6)

(Note: A stationary point is a point at which the gradient is zero.)
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Exercise 22. Show that the optimal value of the constrained problem

max
x
‖Ax‖22 such that ‖x‖22 = 1 (7)

is obtained when x is an eigenvector corresponding to the largest eigenvalue of AᵀA.
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