Important information

- Deadline: Thursday Nov. 1, 2018 at 10:00 AM
- Fill out the tutorial group poll on learnweb ${ }^{1}$. The poll results will be published around We. Oct. 31, 12:00 AM.
- Put your printed or clearly handwritten results into the correct box at Samelsonsonplatz. (box number $=60+$ group number). Write your name and matrikel number on the sheet.

Exercise 1 (Linear Regression Practice).

Download the file 'tutorial3.dat' from the learnweb ${ }^{2}$. It contains two columns x, y of floating point data ($N=50$).

1. (3p) Compute the least squares linear regression $\hat{y}(x)=\hat{\beta_{0}}+\hat{\beta_{1}} x$ for the data.
2. (2p) A second linear model was fitted to the data by a different method. It resulted in the estimator $\hat{f}(x)=1.4 x$. Compute the mean square error (MSE) and the mean absolute error (MAE) both for your model and the proposed model.

$$
\operatorname{MSE}(\hat{y})=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-\hat{y}\left(x_{i}\right)\right|^{2} \quad \operatorname{MAE}(\hat{y})=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-\hat{y}\left(x_{i}\right)\right|
$$

3. (2p) Compute again the MSE and MAE of both estimators, but ignore the last 3 datapoints. What do you notice?
4. (3p) Plot the data and both functions. Which estimator would you prefer and why?

Exercise 2 (Linear Regression Theory).
Given data $x=\left(x_{i}\right)_{i=1: N}, y=\left(y_{i}\right)_{i=1: N}$ you saw in the lecture that if we want to fit a linear model

$$
\hat{y}(x)=\beta_{0}+\beta_{1} x
$$

to the data, such that it minimizes the least squares error

$$
\left(\hat{\beta_{0}}, \hat{\beta_{1}}\right)=\underset{\left(\beta_{0}, \beta_{1}\right)}{\operatorname{argmin}} \operatorname{MSE}(\hat{y}) \quad \operatorname{MSE}(\hat{y})=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

then the optimal parameters $\left(\hat{\beta_{0}}, \hat{\beta_{1}}\right)$ can be written in closed form as

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \quad \hat{\beta}_{1}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

[^0]1. (3p) Show that $\hat{\beta}$ can be rewritten in vectorial form as

$$
\begin{equation*}
\hat{\beta_{0}}=\bar{y}-\hat{\beta_{1}} \bar{x} \quad \quad \hat{\beta}_{1}=\frac{\frac{1}{N} x^{\top} y-\bar{x} \cdot \bar{y}}{\frac{1}{N} x^{\top} x-\bar{x}^{2}} \tag{1}
\end{equation*}
$$

2. (2p) Show that the MSE can be rewritten in vectorial form as

$$
\operatorname{MSE}(\hat{y})=\frac{1}{N}\|y-A \beta\|_{2}^{2}
$$

with

$$
y=\left[\begin{array}{l}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right] \quad A=\left[\begin{array}{ll}
1 & x_{1} \\
\vdots & \\
1 & x_{n}
\end{array}\right] \quad \beta=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]
$$

3. (3p) Show that

$$
\frac{1}{2} \cdot \frac{\partial}{\partial \beta} \operatorname{MSE}(\hat{y})=\left[\begin{array}{cc}
1 & \bar{x} \\
\bar{x} & \frac{1}{N} x^{\top} x
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]-\left[\begin{array}{c}
\bar{y} \\
\frac{1}{N} x^{\top} y
\end{array}\right]
$$

4. (2p) Show that $\frac{\partial}{\partial \beta} \operatorname{MSE}(\hat{y})=0$ if and only if β satisfies the equations (1).

[^0]: ${ }^{1}$ https://www.uni-hildesheim.de/learnweb2018/mod/ratingallocate/view.php?id=31928
 ${ }^{2}$ https://www.uni-hildesheim.de/learnweb2018/pluginfile.php/67442/mod_resource/content/1/tutorial3.dat

