Important information

- Deadline: We. Nov. 7 (Collected Th. 8:00 am)
- Put your printed or clearly handwritten results into the correct box at Samelsonsonplatz. (box number $=60+$ group number). Write your name and matrikel number on the sheet.

Exercise 1 (Linear Regression). In this exercise we will see how multi-dimensional linear regression can be used to perform quadratic regression.

1. (2p) Obtain the file 'tutorial4.dat' from the learnweb ${ }^{1}$. It contains two columns x, y of floating point data $(N=100)$. Our goal is to fit a quadratic function $\hat{y}(x)=a x^{2}+b x+c$ to the data. Rewrite the MSE in vectorized form:

$$
\operatorname{MSE}(\hat{y})=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-\hat{y}\left(x_{i}\right)\right|^{2} \stackrel{!}{=} \frac{1}{N}\|y-A \beta\|_{2}^{2} \quad \beta=\left(\begin{array}{l}
a \tag{1}\\
b \\
c
\end{array}\right)
$$

2. (3p) Solve the normal equation $A^{\top} A \beta=A^{\top} y$. Report the optimal values and the corresponding MSE. Plot the data and the estimator.
3. (2p) Obtain the file 'tutorial4_2.dat' from the learnweb ${ }^{2}$. It contains three columns $\mathrm{x}, \mathrm{y}, \mathrm{z}$ of floating point data $(\bar{N}=1000)$. Our goal is to fit a quadratic function

$$
\hat{z}(x, y)=v^{\top} B v \quad B=\left(\begin{array}{ll}
a & b \tag{2}\\
b & c
\end{array}\right) \quad v=\binom{x}{y}
$$

to the data. Rewrite the MSE in vectorized form:

$$
\operatorname{MSE}(\hat{z})=\frac{1}{N} \sum_{i=1}^{N}\left|z_{i}-\hat{z}\left(x_{i}, y_{i}\right)\right|^{2} \stackrel{!}{=} \frac{1}{N}\|z-A \beta\|_{2}^{2} \quad \beta=\left(\begin{array}{l}
a \tag{3}\\
b \\
c
\end{array}\right)
$$

4. (3p) Solve the normal equation $A^{\top} A \beta=A^{\top} y$. Report the optimal values and the corresponding MSE. (plot not necessary)

Exercise 2 (Gradient descent). In this exercise we want to study the behaviour of gradient descent on the test function $f(x)=x^{4}-1.3 x^{3}-1.95 x^{2}+4 x+3.65$. This function is non-negative and has precisely one local (and also global) minimum at $x^{*}=-1$, $f\left(x^{*}\right)=0$.

[^0]1. (3p) Perform gradient descent with starting point $x_{0}=2$ and step length $\alpha=0.1$. How many iterations are needed until the function value drops below 10^{-6} ?
2. (3p) Try again with the same step length, but from the starting point $x_{0}=1.5$. Why does it take more iterations to achieve the target accuracy, although the starting point is closer to the minimum?
3. (1p) What happens when the starting point $x_{0}=-0.5$ with step-length $\alpha=0.15$ is chosen?
4. (3p) Repeat 1-3, but with Armijo step-length selection, using $\delta=0.1$. How many iterations are needed in each case? What happens if δ is chosen too large (e.g. $\delta=0.9) ?$

[^0]: ${ }^{1}$ https://www.uni-hildesheim.de/learnweb2018/pluginfile.php/71883/mod_resource/content/0/tutorial4.dat
 ${ }^{2}$ https://www.uni-hildesheim.de/learnweb2018/pluginfile.php/71884/mod_resource/content/0/tutorial4_2.dat

