Deadline: Th. Nov. 15, 10:00 am

Exercise 1 (Logistic Regression). Consider the following data sets:

(a) "X2"			(b	(b) "XOR"			(c) "AND"			
x_1	x_2	y	x_1	L	x_2	y		x_1	x_2	y
-1	-1	0	-1	L	-1	0		-1	-1	0
-1	1	1	-1	L	1	1		-1	1	0
1	-1	0	1	L	-1	1		1	-1	0
1	1	1	1	L	1	0		1	1	1

- 1. (3p) Describe in your own words the difference between classification and regression problems.
- 2. (3p) Make plots of the datasets, including the class label. For which of these datasets can 100% correct classification be achieved using logistic regression?
- 3. (3p) Train a logistic regression classifier for each dataset by performing one iteration of gradient descent. Initialize with bias 0, $\beta_1 = 1$, $\beta_2 = 0$ and use step length $\alpha = 1$. Report the updated parameters in each case.
- 4. (1p) For each dataset draw the decision boundary of the classifier before and after performing the gradient descent step.

Exercise 2 (Multiclass classification). In this exercise we want to perfom Linear Discrimant Analysis (LDA) on the famous Iris data set. Obtain the file 'iris.data' from the learnweb or from the UCI-repository¹

- 1. (2p) Make scatter plots of sepal-length/sepal-width and petal-length/petal-width
- 2. (4p) For each class, compute the mean μ_k and covariance matrix Σ_k .
- 3. (4p) Perform the prediction. How many data points are predicted correctly? Highlight the false predictions in your scatter plots.

¹https://archive.ics.uci.edu/ml/datasets/iris