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Deadline: Th. Nov. 22, 10:00 am

On this sheet you can earn up to 4 bonus points.

Exercise 1 (Hyperparameters - 5-+2 points).

1. (3p) Why can hyperparameters in general not be trained directly via gradient
descent?

2. (4p) Consider the regularized loss

0x(B) = M MSE(9(B)) + M 18]l + A2lI8113

Why is a grid-search with A\; € {1,2,4} inefficient? How many of the HP combina-
tions are redundant? How does random search avoid this problem?

Exercise 2 (Ridge Regression - 542 points).

1. (3p) Write down the gradient descent update for Ridge-Regression in vectorized
form!

2. (4p) The condition number x of a symmetric matrix is defined as

’)\max ’
|)\min|

R(A) = (1)

where A\pax and Apin are the largest and smallest (in terms of absolute value)
eigenvalue of A. The condition number measures how sensitive the solution x of
the linear system y = Az is with respect to changes in y.

A matrix is said to be well /ill-conditioned if its condition number is small /large.
Il conditioned matrices can lead to numerical instabilities during computations!
Show that the modified matrix A = XTX + 2AI of Ridge-Regression with X > 0 is
always better conditioned than A = XTX.

Hint: If Apax > ... > Amin > 0 are the eigenvah{es of A (note that A is positive
semi-definite!), then what are the eigenvalues of A?

Exercise 3 (Model Selection - 10 points). The most common data model in statistics is
y=flz)+e (2)

where € is typically random white noise € 9N (0,02). In particular, one can rewrite y as
a random variable given by

p(ylz) = N(ylf(z),0?) (3)

Tt holds that 1 < k(A) < co. Note that A is invertible if and only if x(A) < oo
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In linear regression one assumes that f(z) = w7z, or, more generally?, f(z) = wT¢(x) is a
useful estimator for f. This parametrization yields, with § = (w, ¢), the linear regression

model

p(yl, 0) = N (ylwTz, o)

1. (3p) Show that the log-likelihood ¢(0) = logp(D|6) = Zf\; log p(y;|x;, 0) is equal

to

11 .
— 5N (53 MSE(f) + log(2r0?) )

2. (2p) In Tutorial 3.2 we have already seen that the @ which maximizes ¢(f) can be

found by solving % MSE(f) =0, i.e. the normal equation XTXw = XTy.
Show that the & which maximizes ¢() is given by

6% = MSE(f)

In particular the maximum likelihood estimator (MLE) for the linear regression

model is given by

. 1 .
00) = ¢(w,6) = —QN(I +log (27 MSE(f))>
3. (2p) Show that the BIC of the linear regression model is equal to
1 A 1
— §Nlog (MSE(f)) — §Dlog(N) +cN

where ¢ is some constant.

Note: The constant term is typically dropped because it plays no role when

comparing the BIC of different models on the same dataset.

4. (3p) Given data (x;,y;)i=1..10, 3 models have been fitted to the data. A linear model
91(x) = a12 + ao, a quadratic model f2(z) = byz? + b1z + by and a polynomial of

degree 5: y3(z). Which one has the best BIC ?

2For example we have already seen ¢(z) = [z, 1]T, ¢(z) = [z2, 2", 2°]T and ¢(x,y) = [2?, 2zy, v*]T
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