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Deadline: Th. Nov. 22, 10:00 am

On this sheet you can earn up to 4 bonus points.

Exercise 1 (Hyperparameters - 5+2 points).

1. (3p) Why can hyperparameters in general not be trained directly via gradient
descent?

2. (4p) Consider the regularized loss

`λ(β) = λ0MSE(ŷ(β)) + λ1‖β‖1 + λ2‖β‖22

Why is a grid-search with λi ∈ {1, 2, 4} inefficient? How many of the HP combina-
tions are redundant? How does random search avoid this problem?

Exercise 2 (Ridge Regression - 5+2 points).

1. (3p) Write down the gradient descent update for Ridge-Regression in vectorized
form!

2. (4p) The condition number κ of a symmetric matrix is defined as

κ(A) =
|λmax|
|λmin|

(1)

where λmax and λmin are the largest and smallest (in terms of absolute value)
eigenvalue of A. The condition number measures how sensitive the solution x of
the linear system y = Ax is with respect to changes in y.

A matrix is said to be well/ill-conditioned if its condition number is small/large.1

Ill conditioned matrices can lead to numerical instabilities during computations!
Show that the modified matrix Ã = XᵀX + 2λI of Ridge-Regression with λ > 0 is
always better conditioned than A = XᵀX.

Hint: If λmax ≥ . . . ≥ λmin ≥ 0 are the eigenvalues of A (note that A is positive
semi-definite!), then what are the eigenvalues of Ã?

Exercise 3 (Model Selection - 10 points). The most common data model in statistics is

y = f(x) + ε (2)

where ε is typically random white noise ε iid∼ N (0, σ2). In particular, one can rewrite y as
a random variable given by

p(y|x) = N (y|f(x), σ2) (3)

1It holds that 1 ≤ κ(A) ≤ ∞. Note that A is invertible if and only if κ(A) <∞
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In linear regression one assumes that f̂(x) = wᵀx, or, more generally2, f̂(x) = wᵀφ(x) is a
useful estimator for f . This parametrization yields, with θ = (w, σ), the linear regression
model

p(y|x, θ) = N (y|wᵀx, σ2) (4)

1. (3p) Show that the log-likelihood `(θ) = log p(D|θ) =
∑N

i=1 log p(yi|xi, θ) is equal
to

− 1

2
N
( 1

σ2
MSE(f̂) + log

(
2πσ2

))
(5)

2. (2p) In Tutorial 3.2 we have already seen that the ŵ which maximizes `(θ) can be
found by solving ∂

∂w MSE(f̂) = 0, i.e. the normal equation XᵀXw = Xᵀy.

Show that the σ̂ which maximizes `(θ) is given by

σ̂2 = MSE(f̂)

In particular the maximum likelihood estimator (MLE) for the linear regression
model is given by

`(θ̂) = `(ŵ, σ̂) = −1

2
N
(
1 + log

(
2πMSE(f̂)

))
(6)

3. (2p) Show that the BIC of the linear regression model is equal to

− 1

2
N log

(
MSE(f̂)

)
− 1

2
D log(N) + cN (7)

where c is some constant.

Note: The constant term is typically dropped because it plays no role when
comparing the BIC of different models on the same dataset.

4. (3p) Given data (xi, yi)i=1...10, 3 models have been fitted to the data. A linear model
ŷ1(x) = a1x+ a0, a quadratic model ŷ2(x) = b2x

2 + b1x+ b0 and a polynomial of
degree 5: ŷ3(x). Which one has the best BIC ?

2For example we have already seen φ(x) = [x, 1]ᵀ, φ(x) = [x2, x1, x0]ᵀ and φ(x, y) = [x2, 2xy, y2]ᵀ
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x y ŷ1 ŷ2 ŷ3
0.00 1.90 0.98 2.02 1.90
0.28 2.04 1.41 1.76 2.07
0.56 1.83 1.84 1.67 1.72
0.83 1.56 2.27 1.75 1.53
1.11 1.29 2.70 2.01 1.76
1.39 2.84 3.13 2.44 2.39
1.67 3.49 3.56 3.04 3.22
1.94 3.33 3.99 3.82 4.05
2.22 5.26 4.42 4.76 4.81
2.50 5.61 4.85 5.88 5.70

M.Sc. Randolf Scholz 3/3 Prof. Dr. Dr. Lars Schmidt-Thieme


