
WiSe 18/19 Machine Learning 1 – Tutorial 8 October 15, 2019

Deadline: Th. Dec. 6, 10:00 am Drop your printed or legible handwritten submissions
into the boxes at Samelsonplatz, or upload them as .pdf or .ipynb files onto the LearnWeb.

Choose and solve 2 of the 3 exercises! You can work on all of them for bonus
points. But you can only earn a maximum of 20+5 points on this sheet!

Exercise 1 (Nearest Neighbors - 10 points). In this exercise we want to test K-Nearest-
Neighbor (KNN) regression on the function

y = f(x) + ε, f(x) = x, ε
iid∼ N (0, 0.1) (1)

To setup, generate a training set Dtrain = (Xtrain, Ytrain) with N = 100 data points, where
xi is randomly sampled from [−1,+1]. Use the taxicab distance.

1. (4) Plot the training set and the prediction of the KNN regression with K = 10 on
[−2, 2]. What happens at the edges?

2. (2) What happens for small/large values of K?

3. (4) Create a test set Dtest = (Xtest, Ytest) with N = 100 data points, where
xi is randomly sampled from [−1,+1]. For K = 1..50 compute both the loss
MSE(ŷ(Xtrain), Ytrain) and the score MSE(ŷ(Xtest), Ytest). Plot both of them. What
is the optimal value for K?

Exercise 2 (Distance metrics - 10 points).

1. (3) Draw all points that are distance 1 away from the origin in R2 according to (1)
the taxicab distance, (2) the euclidean distance and (3) the maximum distance.

2. (3) Show that the taxicab distance satisfies the defining properties of being a metric.

3. (4) Compute the Levenshtein distance between HAPPY and HIPPO by filling out the
table according to the recursive algorithm.

H A P P Y
0 1 2 3 4 5

H 1
I 2
P 3
P 4
O 5
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Exercise 3 (Distance Measures - 10 points). In lecture 3 the Mahalanobis distance

d(x, y) =
√

(x− y)ᵀΣ−1(x− y) (2)

was introduced in the context of LDA. In this exercise we want to show that this is indeed
a metric.

1. (3) Show that if A is spd,1 then 〈x|y〉A
def
= xᵀAy is an inner product2

2. (4) Show that if 〈·|·〉 is an inner product, then ‖x‖ def
=

√
〈x|x〉 is a norm.

3. (3) Show that if ‖ · ‖ is a norm, then d(x, y)
def
= ‖x− y‖ is a metric.

It follows that for any spd matrix A

d(x, y) =
√

(x− y)ᵀA(x− y) (3)

is a metric. The inner product 〈x|y〉A
def
= xTAy has important applications beyond the Ma-

halanobis distance like for example the conjugate gradient method3 in convex optimization.

Hint: Base your arguments on the defining properties of the inner product, norm and met-
ric (see table). To prove the subadditivity in part 2, use the Cauchy-Schwartz-Inequality
| 〈x|y〉 |2 ≤ 〈x|x〉 · 〈y|y〉, which holds true for any inner product!

inner product 〈·|·〉 norm ‖ · ‖ metric d(·, ·)

〈αx|y〉 = α 〈x|y〉
〈x+ z|y〉 = 〈x|y〉+ 〈z|y〉
(linearity)

‖αx‖ = |α| · ‖x‖
(absolute homogeneity) –

〈x|y〉 = 〈y|x〉
(symmetry) – d(x, y) = d(y, x)

(symmetry)

– ‖x+ y‖ ≤ ‖x‖+ ‖y‖
(subadditivity)

d(x, z) ≤ d(x, y) + d(y, z)
(subadditivity)

〈x|x〉 ≥ 0
〈x|x〉 = 0 iff x = 0
(positive definiteness)

‖x‖ ≥ 0
‖x‖ = 0 iff x = 0
(positive definiteness)

d(x, y) ≥ 0
d(x, y) = 0 iff x = y
(positive definiteness)

Table 1: defining properties of inner products, norms, and metrics

1symmetric positive definite, cf. tutorial 2
2Note that in the case A = I, this is simply the standard dot product!
3https://en.wikipedia.org/wiki/Conjugate_gradient_method
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Note: The word "iff" is a short form for "if and only if". The given properties must
hold for all vectors x, y, z ∈ Rn and scalars α ∈ R. Finally, note that due to symmetry
the inner product is not only linear in the first component, but in both!
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