Deadline: Th. Dec. 6, 10:00 am Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz, or upload them as .pdf or .ipynb files onto the LearnWeb.

Choose and solve 2 of the 3 exercises! You can work on all of them for bonus points. But you can only earn a maximum of 20+5 points on this sheet!

Exercise 1 (Nearest Neighbors - 10 points). In this exercise we want to test K-Nearest-Neighbor (KNN) regression on the function

$$y = f(x) + \epsilon, \qquad f(x) = x, \qquad \epsilon \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 0.1)$$
(1)

To setup, generate a training set $D_{\text{train}} = (X_{\text{train}}, Y_{\text{train}})$ with N = 100 data points, where x_i is randomly sampled from [-1, +1]. Use the taxicab distance.

- 1. (4) Plot the training set and the prediction of the KNN regression with K = 10 on [-2, 2]. What happens at the edges?
- 2. (2) What happens for small/large values of K?
- 3. (4) Create a test set $D_{\text{test}} = (X_{\text{test}}, Y_{\text{test}})$ with N = 100 data points, where x_i is randomly sampled from [-1, +1]. For K = 1..50 compute both the loss $\text{MSE}(\hat{y}(X_{\text{train}}), Y_{\text{train}})$ and the score $\text{MSE}(\hat{y}(X_{\text{test}}), Y_{\text{test}})$. Plot both of them. What is the optimal value for K?

Exercise 2 (Distance metrics - 10 points).

- 1. (3) Draw all points that are distance 1 away from the origin in \mathbb{R}^2 according to (1) the taxicab distance, (2) the euclidean distance and (3) the maximum distance.
- 2. (3) Show that the taxicab distance satisfies the defining properties of being a metric.
- 3. (4) Compute the Levenshtein distance between HAPPY and HIPPO by filling out the table according to the recursive algorithm.

		Η	А	Р	Р	Υ
	0	1	2	3	4	5
Η	1					
Ι	2					
Р	3					
Р	4					
Ο	5					

Exercise 3 (Distance Measures - 10 points). In lecture 3 the Mahalanobis distance

$$d(x,y) = \sqrt{(x-y)^{\mathsf{T}} \Sigma^{-1}(x-y)}$$
(2)

was introduced in the context of LDA. In this exercise we want to show that this is indeed a metric.

- 1. (3) Show that if A is spd,¹ then $\langle x|y\rangle_A \stackrel{\text{def}}{=} x^{\mathsf{T}}Ay$ is an inner product²
- 2. (4) Show that if $\langle \cdot | \cdot \rangle$ is an inner product, then $||x|| \stackrel{\text{def}}{=} \sqrt{\langle x | x \rangle}$ is a norm.
- 3. (3) Show that if $\|\cdot\|$ is a norm, then $d(x, y) \stackrel{\text{def}}{=} \|x y\|$ is a metric.

It follows that for any spd matrix A

$$d(x,y) = \sqrt{(x-y)^{\mathsf{T}}A(x-y)} \tag{3}$$

is a metric. The inner product $\langle x|y\rangle_A \stackrel{\text{def}}{=} x^T A y$ has important applications beyond the Mahalanobis distance like for example the conjugate gradient method³ in convex optimization.

Hint: Base your arguments on the defining properties of the inner product, norm and metric (see table). To prove the subadditivity in part 2, use the Cauchy-Schwartz-Inequality $|\langle x|y\rangle|^2 \leq \langle x|x\rangle \cdot \langle y|y\rangle$, which holds true for any inner product!

inner product $\langle\cdot \cdot\rangle$	norm $\ \cdot\ $	metric $d(\cdot, \cdot)$
	$\ \alpha x\ = \alpha \cdot \ x\ $ (absolute homogeneity)	_
$\langle x y \rangle = \langle y x \rangle$ (symmetry)	_	d(x, y) = d(y, x) (symmetry)
_	$ x + y \le x + y $ (subadditivity)	$d(x, z) \le d(x, y) + d(y, z)$ (subadditivity)
$ \langle x x \rangle \ge 0 \langle x x \rangle = 0 \text{ iff } x = 0 (positive definiteness) $	$ x \ge 0$ x = 0 iff x = 0 (positive definiteness)	$d(x, y) \ge 0$ d(x, y) = 0 iff x = y (positive definiteness)

Table 1: defining properties of inner products, norms, and metrics

²Note that in the case A = I, this is simply the standard dot product!

¹symmetric **p**ositive definite, cf. tutorial 2

³https://en.wikipedia.org/wiki/Conjugate_gradient_method

Note: The word "iff" is a short form for "if and only if". The given properties must hold for all vectors $x, y, z \in \mathbb{R}^n$ and scalars $\alpha \in \mathbb{R}$. Finally, note that due to symmetry the inner product is not only linear in the first component, but in both!