Deadline: Th. Dec. 6, 10:00 am Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz, or upload them as .pdf or .ipynb files onto the LearnWeb.

Choose and solve 2 of the 3 exercises! You can work on all of them for bonus points. But you can only earn a maximum of $20+5$ points on this sheet!

Exercise 1 (Nearest Neighbors - 10 points). In this exercise we want to test K-NearestNeighbor (KNN) regression on the function

$$
\begin{equation*}
y=f(x)+\epsilon, \quad f(x)=x, \quad \epsilon \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0,0.1) \tag{1}
\end{equation*}
$$

To setup, generate a training set $D_{\text {train }}=\left(X_{\text {train }}, Y_{\text {train }}\right)$ with $N=100$ data points, where x_{i} is randomly sampled from $[-1,+1]$. Use the taxicab distance.

1. (4) Plot the training set and the prediction of the KNN regression with $K=10$ on $[-2,2]$. What happens at the edges?
2. (2) What happens for small/large values of K ?
3. (4) Create a test set $D_{\text {test }}=\left(X_{\text {test }}, Y_{\text {test }}\right)$ with $N=100$ data points, where x_{i} is randomly sampled from $[-1,+1]$. For $K=1 . .50$ compute both the loss $\operatorname{MSE}\left(\hat{y}\left(X_{\text {train }}\right), Y_{\text {train }}\right)$ and the score $\operatorname{MSE}\left(\hat{y}\left(X_{\text {test }}\right), Y_{\text {test }}\right)$. Plot both of them. What is the optimal value for K ?

Exercise 2 (Distance metrics - 10 points).

1. (3) Draw all points that are distance 1 away from the origin in \mathbb{R}^{2} according to (1) the taxicab distance, (2) the euclidean distance and (3) the maximum distance.
2. (3) Show that the taxicab distance satisfies the defining properties of being a metric.
3. (4) Compute the Levenshtein distance between HAPPY and HIPPO by filling out the table according to the recursive algorithm.

		H	A	P	P	Y
	0	1	2	3	4	5
H	1					
I	2					
P	3					
P	4					
O	5					

Exercise 3 (Distance Measures - 10 points). In lecture 3 the Mahalanobis distance

$$
\begin{equation*}
\mathrm{d}(x, y)=\sqrt{(x-y)^{\top} \Sigma^{-1}(x-y)} \tag{2}
\end{equation*}
$$

was introduced in the context of LDA. In this exercise we want to show that this is indeed a metric.

1. (3) Show that if A is spd, ${ }^{1}$ then $\langle x \mid y\rangle_{A} \stackrel{\text { def }}{=} x^{\top} A y$ is an inner product ${ }^{2}$
2. (4) Show that if $\langle\cdot \mid \cdot\rangle$ is an inner product, then $\|x\| \stackrel{\text { def }}{=} \sqrt{\langle x \mid x\rangle}$ is a norm.
3. (3) Show that if $\|\cdot\|$ is a norm, then $\mathrm{d}(x, y) \stackrel{\text { def }}{=}\|x-y\|$ is a metric.

It follows that for any spd matrix A

$$
\begin{equation*}
\mathrm{d}(x, y)=\sqrt{(x-y)^{\top} A(x-y)} \tag{3}
\end{equation*}
$$

is a metric. The inner product $\langle x \mid y\rangle_{A} \stackrel{\text { def }}{=} x^{T} A y$ has important applications beyond the Mahalanobis distance like for example the conjugate gradient method ${ }^{3}$ in convex optimization.

Hint: Base your arguments on the defining properties of the inner product, norm and metric (see table). To prove the subadditivity in part 2, use the Cauchy-Schwartz-Inequality $|\langle x \mid y\rangle|^{2} \leq\langle x \mid x\rangle \cdot\langle y \mid y\rangle$, which holds true for any inner product!

| inner product $\langle\cdot \mid \cdot\rangle$ | norm $\\|\cdot\\|$ | metric $\mathrm{d}(\cdot, \cdot)$ | | | | |
|---|---|---|---|---|---|---|---|---|
| $\langle\alpha x \mid y\rangle=\alpha\langle x \mid y\rangle$ | $\\|\alpha x\\|=\|\alpha\| \cdot\\|x\\|$ | |
| $\langle x+z \mid y\rangle=\langle x \mid y\rangle+\langle z \mid y\rangle$
 (linearity) | (absolute homogeneity) | - |
| $\langle x \mid y\rangle=\langle y \mid x\rangle$ | | |
| (symmetry) | - | $\mathrm{d}(x, y)=\mathrm{d}(y, x)$ |
| | | (symmetry) |
| - | $\\|x+y\\| \leq\\|x\\|+\\|y\\|$ | $\mathrm{d}(x, z) \leq \mathrm{d}(x, y)+\mathrm{d}(y, z)$ |
| | (subadditivity) | (subadditivity) |
| | $\\|x\\| \geq 0$ | |
| $\langle x \mid x\rangle \geq 0$ | $\\|x\\|=0$ iff $x=0$ | $\mathrm{~d}(x, y) \geq 0$ |
| $\langle x \mid x\rangle=0$ iff $x=0$ | (positive definiteness) | (positive definiteness) |
| (positive definiteness) | | |

Table 1: defining properties of inner products, norms, and metrics

[^0]Note: The word "iff" is a short form for "if and only if". The given properties must hold for all vectors $x, y, z \in \mathbb{R}^{n}$ and scalars $\alpha \in \mathbb{R}$. Finally, note that due to symmetry the inner product is not only linear in the first component, but in both!

[^0]: ${ }^{1}$ symmetric positive definite, cf. tutorial 2
 ${ }^{2}$ Note that in the case $A=I$, this is simply the standard dot product!
 ${ }^{3}$ https: / /en.wikipedia.org/wiki/Conjugate_gradient_method

