Deadline: Th. Jan. 24, 10:00 am Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz.

Exercise 1 (SVD - 0 points). Let A be a $m \times n$ matrix of rank r with SVD $A=U \Sigma V^{\top}$. Then $A^{+}=V \Sigma^{+} U^{\top}$ is called it's pseudo-inverse, where

$$
\Sigma=\left[\begin{array}{ccc|c}
\sigma_{1} & & & \\
& \ddots & & 0_{r \times n-r} \\
& & { }_{r} & \\
\hline 0_{m-r \times r} & 0_{m-r \times n-r}
\end{array}\right] \quad \Sigma^{+}=\left[\left.\begin{array}{cc|c}
\sigma_{1}^{-1} & & \\
& \ddots & \\
& & 0_{r \times m-r} \\
\hline & & \sigma_{r}^{-1}
\end{array} \right\rvert\,\right.
$$

In linear regression, we want to minimize $\|Y-X \beta\|_{2}^{2}$. We know that the optimal parameter β satisfies the normal equation $X^{\top} X \beta=X^{\top} Y$. Use the SVD to show that

- If $X^{\top} X$ is invertible, then $\left(X^{\top} X\right)^{-1} X^{\top}=X^{+}$
- $\beta=X^{+} Y$ solves the Normal equation, even if $X^{\top} X$ is not invertible

Exercise 2 (Q\&A - 0 points). Write up to 3 short questions you want to see discussed next week. We will select and prepare for some of the most often asked ones.

