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Machine Learning 1. The Classification Problem
‘e . N
The Classification Problem “

Example: classifying iris plants
(Anderson 1935).

150 iris plants (50 of each species):
P 3 species:

iris setosa iris versicolor
setosa, versicolor, virginica

> length and width of sepals (in cm)

> length and width of petals (in cm)

Given the lengths and widths of
sepals and petals of an instance,
which iris species does it belong to?

iris virginica

[source: iris species database, http://www.badbear.com/signa]
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Machine Learning 1. The Classification Problem

The Classification Problem / Data

Sepal.Length  Sepal.Width Petal.Length Petal.Width Species
1 5.10 3.50 1.40 0.20 setosa
2 4.90 3.00 1.40 0.20 setosa
3 4.70 3.20 1.30 0.20 setosa
51 7.00 3.20 4.70 1.40 versicolor
52 6.40 3.20 4.50 1.50 versicolor
53 6.90 3.10 4.90 1.50 versicolor
101 6.30 3.30 6.00 2.50 virginica
150 5.90 3.00 5.10 1.80 virginica
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Machine Learning 1. The Classification Problem

The Classification Problem
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Machine Learning 1. The Classification Problem

The Classification Problem

Sepal.Length

o,

e

+

LI I
45 55 65 75

Petal.Length

12345867

Petal.Width

45 55 65 75 12

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4/ 48



Machine Learning 1. The Classification Problem

B
Binary Classification “

Let us start simple and consider two classes only,
e.g., target space ) := {0, 1}.

Given

> aset DN = {(x1, 1), (x2,¥2),- - -, (xvs yv) } € RM x Y called
training data,

we want to estimate a model y(x) s.t. for a set Dt C RM x ) called
test set the test error (here: misclassification rate)

1 "
ere(7: D) = mer(7: D) 1= e D0y # 9(x)
(x,y E’Dtest

is minimal.
Note: [/(A) := 1 if statement A is true, /(A) := 0 otherwise (indicator function).

Dt has (i) to be from the same data generating process and (ii) not to be available
Ifjalr:lsnsngmt\‘crj?—l"lnhlgge Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 1. The Classification Problem

Binary Classification / Data

Species
Sepal.Length  Sepal.Width Petal.Length Petal. Width setosa

1 5.10 3.50 1.40 020 1

2 4.90 3.00 1.40 020 1

3 4.70 3.20 1.30 020 1
51 7.00 3.20 4.70 140 0
52 6.40 3.20 4.50 150 0
53 6.90 3.10 4.90 150 0
101 6.30 3.30 6.00 250 0
150 5.90 3.00 5.10 180 0
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Machine Learning 2. Logistic Regression

Binary Classification with Linear Regression

One idea could be to optimize the linear regression model
Y =(X,B8)+¢

for RSS.

This has several problems

» It is not suited for predicting y as it can assume all kinds of
intermediate values.

» It is optimizing for the wrong loss.

0.8
Il

target
0.4

0.0
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Machine Learning 2. Logistic Regression

Binary Classification with Linear Regression

Instead of predicting Y directly, we predict

p(Y =1|X; B) — the probability of Y being 1 knowing X.

But linear regression is also not suited for predicting probabilities,
as its predicted values are principally unbounded.

Use a trick and transform the unbounded target by a function
that forces it into the unit interval [0, 1]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Machine Learning 2. Logistic Regression

Logistic Function

Logistic function:

e* 1

logistic(x) := =
& (*) 1+ ex 1+e X n
®
o
. : = _
Basic properties: g o
» has values between 0 and 1, g o7
» converges to 1 when S +——
approaching +oo, 6 -4 2 0 2 4

P converges to 0 when
approaching —oo,

» is smooth and symmetric at
(0,0.5).
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Machine Learning 2. Logistic Regression
Logistic Regression Model

ezle BmXm

P(Y =11X: B) = logistic((X, ) + ¢ = ——=r5 5+

P observed targets are converted to probabilities 0,1

» probability 1 for targets Y =1,
probability 0 for targets Y =0

» ¢ is a random variable called noise
» predicted targets are probabilities [0, 1]

ezle Bmxm

y(x; B) := logistic({x, 8)) = 10 o o

> remember: a logistic regression model is a classification model
P despite its name
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Machine Learning 2. Logistic Regression

Loss Function
Misclassification rate

mer(3; DY) := mer(9(.; B); D)
= |Dt1est| S iy #9(x D))

(X7y)€'Dtest

‘Dtlest’ Z I(y # I(logistic(3" x) > 0.5))

( X, y 'Dtest
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Machine Learning 2. Logistic Regression

Loss Function
Misclassification rate
mcr(ﬁ; DY) = mer(P(.; BA) Drest)

=|D1| S iy £ 90 B)

(X7y)€Dtest

‘Dtlest’ Z I(y # I(logistic(37 x) > 0.5))

(x,y G'Dtest

is unsuited as loss function for minimization as it is not continuous.

Use a continuous proxy loss instead, e.g., adhoc

{(y; D)) = 1 Z I(y = 0) logistic(37 x)

’Dtest‘
(X,y)EDtESt
+I(y = 1) (1 — logistic(3 " x))
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Machine Learning 2. Logistic Regression

Maximum Likelihood Estimator
As fit criterium, the likelihood is used.

As Y is binary, it has a Bernoulli distribution:

Y |X = Bernoulli(p(Y = 1| X))

Thus, the conditional likelihood function is:

N
LE™(B) =[] P(Y = ya | X = xa: 3)
n=1
N ~ ~
=TI p(Y = 11X = xu: By (1 = p(Y = 1| X = xa; )}
n=1
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Machine Learning 2. Logistic Regression

. . N
Estimating Model Parameters “

The last step is to estimate the model parameters BA

This will be done by

» maximizing the conditional likelihood function L°D°nd
which is equivalent to

» maximizing the log likelihood /og(L%’"d)

This can be done with any optimization technique. We will have a closer
look at

» Gradient Ascent

» = Gradient Descent, but for maximization:
update direction is just the gradient.

» Newton Method

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Logistic Regression via Gradient Ascent
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Machine Learning 3. Logistic Regression via Gradient Ascent

Gradient Ascent

maximize-GA(f : RN — R, xo € RV, i1, tyax € Nye € RY):
for t:=1,..., tmax:
x(®) = x(t=1) 4y %(X(Fl))
if f(x®)) - f(xt)) < e
return x(9)
raise exception "not converged in tn.y iterations”

For maximizing function f instead of minimizing it
go to the positive direction of the gradient.
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Machine Learning 3. Logistic Regression via Gradient Ascent

Gradient Ascent for the Loglikelihood

log L™ (3 Z Ynlog 9n + (1 = yn) log(1 — 9)
n=1
N | e<Xn75A> 1 | 1 e(XmB)
== Al + - - . a_
nz_;)/n og( 14+ ebxnB) )+ yn) log( 1 4 efxn,B) )

= Zy,,(<x B) — log(1 + e<X”’ﬂ>)) + (1= yn) |°g(m)

n=1
N ~
= yalon. B) — log(1 + 7)) + (1 = yo)(~ log(1 + e 7))
N
:Zy”<x B> |og(1_|_e<xn,,8>)
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Machine Learning 3. Logistic Regression via Gradient Ascent

NN
Gradient Ascent for the Loglikelihood “

log L%md(ﬁ) :ZYn<Xn7B> — log(1 + e<X"’B>)

dlog LM(B) 1 N
Vslog Lgnd = = —="D_ 7 I N CONC)
pIOETD op nz_:l}/nxn 1+ ebm.b) ¢ Xn

~
YN
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Machine Learning 3. Logistic Regression via Gradient Ascent

NN
Gradient Ascent for the Loglikelihood “

1 learn-logreg-GA(DY" := {(x1,y1), - -+, (Xn; YN) }, s tmax € N, € € RT):

2 L= log L™(B) 1= S0y Ynlxn: ) — log(L + b))
s Bi= maximize-GA(, Oum, (4, tmaxs €)
4 return BA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Logistic Regression via Gradient Ascent

Gradient Ascent for the Loglikelihood

learn-logreg-GA(D™" := {(x1,y1), ..., (XN, Yn)}, iy tmax € N, e € RT):
X = (xi,x2, .., xn) "
y =y yw)’
Bi=0m
0= Y0 Yalxns B) — log(1 + b))

for t=1,..., tmax:
§=1/1+e P ey
B=B+p-X"(y-9)
gold )
0= 5N yalxe, B) — log(1 + ebn)
it (- <
return B

raise exception "not converged in tn.y iterations”
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Machine Learning 4. Logistic Regression via Newton
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Machine Learning 4. Logistic Regression via Newton

Newton Algorithm
Given a function f : RN — R, find x with minimal f(x).

The Newton algorithm is based on a quadratic Taylor expansion of f
around Xx;:

of 1 o0*f
Fe(x) := f(x) + (a(xt),x —xt) + §<X — Xt, W(Xt)(x — Xt))
and minimizes this approximation in each step, i.e.,

oF !
S xe1) 0

i OF of 0°f
P = T+ gt () — )

which leads to the Newton algorlthm.

O*f of
W(Xt)(xﬂrl —Xt) = —a(xt)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19

48



Machine Learning 4. Logistic Regression via Newton

Newton Algorithm
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Machine Learning 4. Logistic Regression via Newton

Newton Algorithm

1 minimize-Newton(f : RV — R, x(® € RN i, t. € N, e € RY):
2 for t:=1, ..., tmax:

3 g = Vf(x(t=1)

4 H:= sz(x(tfl))

5 x(0) = x(t=1) _ yH-1g

6 if F(x(tD) - f(x)) < e

return x(9)

8  raise exception "not converged in tp. iterations”

~

x(©) start value
i (fixed) step length / learning rate
tmax Maximal number of iterations
€ minimum stepwise improvement
Vf(x) € RN: gradient, (Vf(x)), = %f(x)
V2f(x) € RV*N: Hessian matrix, V2f(x)nm = O (x)

»m OXnO0Xm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Logistic Regression via Newton

NN
Newton Algorithm for the Loglikelihood “

dlog L™ ()

> =XT(y -y

% (y—19)

92 IogALCD‘z"d(B) — xTwX
0poBT

with
W = diag(§ © (1 - 9))

Update rule for the Logistic Regression with Newton optimization:

B = B 4 (XTWX) X T (y — §)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Logistic Regression via Newton

Learning Logistic Regression via Newton

1 learn-logreg-Newton (D" := {(x1,y1), ..., (xn, YN)}, i, tmax € N, € € RT):
2 L= —log L"(B) := 27:1 Yo(xn; B) — log(1 + e<X"’B>)

3 B3 := minimize-Newton (£, Op, 2, tmax, €)

4 return BA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Logistic Regression via Newton

Newton Algorithm for the Loglikelihood

Xl x2 y 111 1
1 1 + 0
13 2 1| 20
3 2 4+ ,X:= , Y = , P =10 |, u=1
> o 122 0 0
0 3 103 0
0.5 0.25 0
A(o) _ 05 (0) — . 025 T o) —
0.5 0.25
" 1455 —2.22 —5.11 ) 2.88
(XTW(O)X> —| —222 08 044 |, AV=| o044
—511 044 222 ~1.77
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Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models

To visualize a logistic regression model, we can plot the decision

boundary

9X) = BY =1]X) = 3

and more detailed some level curves
y(X)=p(Y =1[X)=po

e.g., for pp = 0.25 and py = 0.75:

(3. %) = log(2° )

For logistic regression: decision boundary and level curves are straight
lines!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models (t = 1)

1.0 -
05 -
¥ 004 "
05 - L
-1.0 4 -
T T T T T
-1.0 -05 0.0 05 10
x1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

% :

26 / 48



Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models (t = 2)
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Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models (t = 3)
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Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models (t = 4)
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Machine Learning 5. Multi-category Targets
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Machine Learning 5. Multi-category Targets
Binary vs. Multi-category Targets

Binary Targets / Binary Classification:

prediction of a nominal target variable with 2 levels/values.

Example: spam vs. non-spam.

Multi-category Targets / Multi-class Targets / Polychotomous
Classification:

prediction of a nominal target variable with more than 2 levels/values.

Example: three iris species; 10 digits; 26 letters etc.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 5. Multi-category Targets

Compound vs. Monolithic Classifiers

Compound models
» built from binary submodels,

» different types of compound models employ different sets of submodels:
> 1l-vs-rest (aka 1l-vs-all)
» 1-vs-last
» 1-vs-1 (Dietterich and Bakiri 1995; aka pairwise classification)
> DAG
P using error-correcting codes to combine component models.

P also ensembles of compound models are used
(Frank and Kramer 2004).

Monolithic models (aka " ‘one machine”’ (Rifkin and Klautau 2004))
» trying to solve the multi-class target problem intrinsically
» examples: decision trees, special SVMs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 5. Multi-category Targets

Types of Compound Models

1-vs-rest: one binary classifier per class:

f,:X—[01], yevY
fi(x) fe(x) )
ZyGY f(x) 7 ZyGY fy(x)

f(x):=(

1-vs-last: one binary classifier per class (but last yy):

fy:X_>[071]7 yEYvY#)/k
fl(X) fkfl(X) 1 )
T4+ ey i(x) 71+ 30 oy K ()7 1+ oy f(x)

f(x):=(

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 5. Multi-category Targets

Polychotomous Discrimination, k target categories A

1-vs-rest construction:

1-vs-rest 2-vs-rest 3-vs-rest ann

class 2

class 3

1-vs-last construction:

1-vs-k 2-vs—k ven (k=1)-vs—k

class 1

class 2

k classifiers trained on N cases

kN cases in total

k — 1 classifiers trained on approx. 2
N/k on average.

N + (k — 2)Nj cases in total

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 5. Multi-category Targets

Example / Iris data / Logistic Regression
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Machine Learning 5. Multi-category Targets

Example / Iris data / Logistic Regression
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Machine Learning 6. Linear Discriminant Analysis
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6. Linear Discriminant Analysis
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Machine Learning 6. Linear Discriminant Analysis

Assumptions

In discriminant analysis, it is assumed that
» cases of a each class k are generated according to some probabilities

Tk = p(Y = k)

and
» its predictor variables are generated by a class-specific multivariate

normal distribution
X|Y=k~NXERM| g, Ty)

1 eme S )

C(2m) |
Pk € RMazk €

Pi(x)
RMXM

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 6. Linear Discriminant Analysis
.. 2
Decision Rule o
Discriminant analysis predicts as follows:
Y | X = x := arg maxmpx(x) = arg max & (x)
k k

with the discriminant functions

1 1
Sk(x) := ~> log |[Zk| — f( — [, Xy (x — pk)) + log

Here,

(X =ty T (x = p14))
is called the squared Mahalanobis distance of x and .

Thus, discriminant analysis can be described as prototype method, where
P each class k is represented by a prototype px and

P cases are assigned to the class of the nearest prototype.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 6. Linear Discriminant Analysis

Maximum Likelihood Parameter Estimates
The maximum likelihood parameter estimates are as follows:

N
N . 1, ifx=
Ay = E I(yn = k), with [(x=y):= { 0. else Y
n=1 ’

~ ng

Ty i=—

. 1

Hk ::F Xn
k nyn=k

~ 1 " ~

Lii=o (x0 = fik) (%0 — i) "
k nyn=k

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 6. Linear Discriminant Analysis

Bz
QDA vs. LDA i

In the general case, decision boundaries are quadratic due to the quadratic

occurrence of x in the Mahalanobis distance. This is called quadratic

discriminant analysis (QDA).

If we assume that all classes share the same covariance matrix, i.e.,
Y=Y VkK

then this quadratic term is canceled and the decision boundaries become

linear. This model is called linear discriminant analysis (LDA).

The maximum likelihood estimator for the common covariance matrix in

LDA is
£-%

k

b

s |2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 6. Linear Discriminant Analysis

Ny
Example / Iris data / LDA i
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Machine Learning 6. Linear Discriminant Analysis

Ny
Example / Iris data / QDA i

o |
<~
+

wv

s ©

k=]

g

o <

(2l
o
o
o
N

T T T T T T T T
4.5 5.0 55 6.0 6.5 7.0 75 8.0

Sepal.Length

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
41/ 48



Machine Learning 6. Linear Discriminant Analysis

NS
Example / Iris data / LDA i
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Machine Learning 6. Linear Discriminant Analysis

Ny
Example / Iris data / QDA i
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LDA coordinates A

The variance matrix estimated by LDA can be used to linearly transform
the data s.t. the Mahalanobis distance

dx,y) =y (x =y £ (x = )
becomes the standard Euclidean distance in the transformed coordinates
d(x',y) = VX =y X = y) = X =¥z
This is accomplished by the singular value decomposition (SVD) of ¥
>=upu’

with

» an orthonormal matrix U (i.e., UT = U71) and
P a diagonal matrix D and setting
1
x'==D"2UTx
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LDA vs. Logistic Regression

LDA and logistic regression use the same underlying linear model.

For LDA:

P(Y =1|X = x)
P(Y =0[X = x))

log(

— log(22) = S0+ p1, T s — o)+ x. XX — o)
= ap+ (o, x)

For logistic regression by definition we have:

08ty o o) o + 5.%
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LDA vs. Logistic Regression

Both models differ in the way they estimate the parameters.

LDA maximizes the complete likelihood:

HP(XmYn)

HP(XH | ¥n) Hp(yn)

N———

N——
normal pj

categorical

While logistic regression maximizes the conditional likelihood only

H p(Xn; ¥n) H P(¥n | Xn) H f(xn)

| —

logistic ignored
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Summary
P For classification, logistic regression models of type Y = % + € can
be used to predict a binary Y based on several (quantitative) X.

» The maximum likelihood estimates (MLE) can be computed using
Gradient Ascent or Newton's algorithm on the loglikelihood.

» Another simple classification model is linear discriminant analysis (LDA)
that assumes that the cases of each class have been generated by a
multivariate normal distribution with class-specific means p (the class
prototype) and a common covariance matrix ¥.

» The maximum likelihood parameter estimates ﬁk,ﬂk,f for LDA are just the
sample estimates.

» Logistic regression and LDA share the same underlying linear model, but
logistic regression optimizes the conditional likelihood, LDA the complete
likelihood.
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Further Readings

» [?, chapter 3], [?, chapter 7], [?, chapter 3].
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