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Machine Learning

Syllabus
Fri. 26.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 2.11. (2) A.1 Linear Regression
Fri. 9.11. (3) A.2 Linear Classification
Fri. 16.11. (4) A.3 Regularization
Fri. 23.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 30.11. (6) B.1 Nearest-Neighbor Models
Fri. 7.12. (7) B.4 Support Vector Machines
Fri. 14.12. (8) B.3 Decision Trees
Fri. 21.12. (9) B.5 A First Look at Bayesian and Markov Networks

— Christmas Break —
Fri. 11.1. (10) B.2 Neural Networks

C. Unsupervised Learning
Fri. 18.1. (11) C.1 Clustering
Fri. 25.1. (12) C.2 Dimensionality Reduction
Fri. 1.2. (13) C.3 Frequent Pattern Mining
Fri. 8.2. (14) Q&A
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Machine Learning

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization
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Machine Learning 1. The Problem of Overfitting

Fitting of models
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Machine Learning 1. The Problem of Overfitting

Underfitting/Overfitting
I Underfitting:

I the model is not complex enough to explain the data well.
I results in poor predictive performance.

I Overfitting:
I the model is too complex, it describes the

I noise, inherent random variations of the data generating process,
instead of the

I signal, the underlying relationship between target and predictors.

I results in poor predictive performance as well.

I Overfitting is easy: given N points (xn, yn) without repeated
measurements (i.e. xn 6= xm, n 6= m), there exists a polynomial of
degree N − 1 with RSS equal to 0.

ŷ(x) :=
N∑

n=1

yn

N∏
m=1
m 6=n

(x − xm)
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Machine Learning 2. Model Selection
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Machine Learning 2. Model Selection

Losses and Fit Measures
loss fit/quality measure

semantics the smaller, the better the larger, the better
goal minimize maximize

regression
RSS(y , ŷ)

:=
∑N

n=1(yn − ŷn)2

log LN (y , ŷ)

:=
∑N

n=1−
1

2σ2
y

(yn − ŷn)2

RMSE(y , ŷ)

:= ( 1
N

∑N
n=1(yn − ŷn)2)

1
2

MAE(y , ŷ)

:= 1
N

∑N
n=1 |yn − ŷn|

classification
MR(y , ŷ)

:=
∑N

n=1 I(yn 6= ŷn)

ACC(y , ŷ)

:=
∑N

n=1 I(yn = ŷn)

log Lbinomial(y , ŷ)

:=
∑N

n=1 πI(yn = ŷn)
+(1− π)I(yn 6= ŷn)
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Machine Learning 2. Model Selection

Model Selection Measures
I Model selection:

I given a set of models
indexed by p, one model for each value of p

ŷp(x) =

p−1∑
m=0

β̂mxm

I make a choice which model describes the data best.

I If we just look at losses / fit measures such as RSS, then

the larger p, the better the fit

or equivalently

the larger p, the lower the loss

as the model with p parameters can be reparametrized in a model
with p′ > p parameters by setting

β̂′m =

{
β̂m, for m ≤ p
0, for m > p
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Machine Learning 2. Model Selection

Model Selection Measures

I One uses model selection measures of type

model selection measure = fit− complexity (max!)

or equivalently

model selection measure = loss + complexity (min!)

I The smaller the loss (= lack of fit), the better the model.

I The smaller the complexity, the simpler and thus better the model.

I The model selection measure tries to find a trade-off between fit/loss
and complexity.
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Machine Learning 2. Model Selection

Model Selection Measures
Akaike Information Criterion (AIC):

(maximize)
AIC := log L− p

or (minimize)
AIC := −2 log L + 2p

Bayes Information Criterion (BIC) /
Bayes-Schwarz Information Criterion: (maximize)

BIC := log L− p

2
logN

where L denotes the likelihood
p the number of parameters
N the number of samples
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Machine Learning 2. Model Selection

Example: Predicting Murder Rate

sociographic data of the 50 US states in 1977:

xA land area in square miles

xF mean number of days with minimum
temperature below freezing (1931–1960)
in capital or large city

xH percent high-school graduates (1970).

xI illiteracy (percent of population, 1970),

xJ income (per capita, 1974),

xL life expectancy (in years, 1969–71),

xP population (July 1, 1975)

yM murder rate per 100,000 population
(1976)
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Machine Learning 2. Model Selection

Variable Backward Selection

  

{ A, F, H, I, J, L, P } 
AIC = 63.01

{ A, F, H, I, J, L, P }
AIC = 63.87

{ A, F, H, I, J, L, P }
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{ A, F, H, I, J, L, P }
AIC = 70.17

X

X X X... ...
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AIC = 68.70

... ...X X X XX X

{ A, F, H, I, J, L, P }
AIC = 63.23

{ A, F, H, I, J, L, P }
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...XXX X XX XX X
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Machine Learning 2. Model Selection
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Machine Learning 3. Regularization
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Machine Learning 3. Regularization

Shrinkage

I Model selection operates by

1. fitting model instances for a set of models with varying complexity

2. picking the ”best one” in hindsight,

I Variable Selection
I = model selection applied to models with different predictor subsets

I for models ŷ that factor through a linear combination of the predictors,

ŷ(x ; β̂) = f (
M∑

m=1

β̂mxm) for a suitable f

I dropping a variable xm from the model is equivalent to

I forcing its model parameter β̂m to be 0.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: “Fitting a model instance” = “Learning model parameters”,
for models having parameters such as linear regression, logistic regression etc.



Machine Learning 3. Regularization

Shrinkage

I Variable Selection
I . . .

I forcing its model parameter β̂m to be 0.

I Shrinkage follows a similar idea:
I smaller parameters mean a simpler hypothesis/less complex model.

I hence, small parameters should be prefered in general.

I a term is added to the objective function to
I favor small parameters or equivalently

I penalize large parameters or

I shrink them towards 0

instead of forcing them to be 0.
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Machine Learning 3. Regularization

Shrinkage / Regularization Penalties

There are various types of shrinkage techniques for different problem
settings.

L1/Lasso Regularization: λ
∑M

m=1 |β̂m| = λ‖β̂‖1

L2/Tikhonov Regularization: λ
∑M

m=1 β̂
2
m = λ‖β̂‖2

2

Elastic Net: λ1‖β̂‖1 + λ2‖β̂‖2
2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization

Ridge Regression

Ridge regression is a combination of

N∑
n=1

(yn − ŷn)2

︸ ︷︷ ︸+λ
M∑

m=1

β2
m︸ ︷︷ ︸

= L2 loss +λ L2 regularization

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization

Ridge Regression (Closed Form)
Ridge regression: minimize

RSSλ(β̂) =RSS(β̂) + λ

M∑
m=1

β̂2
m = 〈y − Xβ̂, y − Xβ̂〉+ λ〈β̂, β̂〉

⇒ β̂ =
(

XTX + λI
)−1

XTy, I :=


1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


with λ ≥ 0 a complexity parameter / regularization parameter.

Beware: ridge regression parameter estimates are not equivariant under
scaling of the predictors
 data should be normalized before parameter estimation:

x ′n,m :=
xn,m − x̄.,m
σ̂(x.,m)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization

Ridge Regression (Gradient Descent)
1 learn-ridgereg-GD(Dtrain := {(x1, y1), . . . , (xN , yN)}, µ, tmax ∈ N, ε ∈ R+):

2 X := (x1, x2, . . . , xN)T

3 y := (y1, y2, . . . , yN)T

4 β̂ := 0M

5 ` := ||y − X β̂||2
6 for t = 1, . . . , tmax:

7 β̂ := β̂ − µ(−2 · XT (y − X β̂)+2λβ̂)

8 `old := `

9 ` := ||y − X β̂||2
10 if `− `old < ε:

11 return β̂
12 raise exception ”not converged in tmax iterations”

L2-Regularized Update Rule

β̂(t) := (1− 2µλ)︸ ︷︷ ︸
shrinkage

β̂(t−1) − µ
(
−2XT (y − X β̂(t−1))

)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization

Tikhonov Regularization Derivation (1/2)
Treat the true parameters θj as random variables Θj with the following
distribution (prior):

Θj ∼ N (0, σΘ), j = 1, . . . , p

Then the joint likelihood of the data and the parameters is

LD,Θ(θ) :=

(
N∏

n=1

p(xn, yn | θ)

)
p∏

j=1

p(Θj = θj)

and the conditional joint log likelihood of the data and the parameters

log Lcond
D,Θ (θ) :=

(
N∑

n=1

log p(yn | xn, θ)

)
+

p∑
j=1

log p(Θj = θj)

and

log p(Θj = θj) = log
1√

2πσΘ

e
−

θ2
j

2σ2
Θ = − log(

√
2πσΘ)−

θ2
j

2σ2
Θ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization

Tikhonov Regularization Derivation (2/2)
Dropping the terms that do not depend on θj yields:

log Lcond
D,Θ (θ) :=

(
N∑

n=1

log p(yn | xn, θ)

)
+

p∑
j=1

log p(Θj = θj)

∝

(
N∑

n=1

log p(yn | xn, θ)

)
− 1

2σ2
Θ

p∑
j=1

θ2
j

This also gives a semantics to the complexity / regularization parameter λ:

λ =
1

2σ2
Θ

but σ2
Θ is unknown. (We will see methods to estimate λ soon.)

The parameters θ that maximize the joint likelihood of the data and the
parameters are called Maximum Aposteriori Estimators (MAP
estimators).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization

L2-Regularized Logistic Regression (Gradient Descent)

log Lcond
D (β̂) =

N∑
n=1

yn〈xn, β̂〉 − log(1 + e〈xn,β̂〉)−2λ
P∑
j=1

β̂2
j

1: procedure Log-Regr-
GA(Lcond

D : RP+1 → R, β̂(0) ∈ RP+1, µ, tmax ∈ N, ε ∈ R+)
2: for t = 1, . . . , tmax do

3: β̂
(t)
0 := β̂

(t−1)
0 + µ

∑N
n=1

(
yn − p

(
Y = 1|X = xn; β̂(t−1)

))
4: for j = 1, . . . ,P do

5: β̂
(t)
j :=

β̂
(t−1)
j + µ(

∑N
n=1 xn,j

(
yn − p

(
Y = 1|X = xi ; β̂

(t−1)
))
−2λβ̂

(t−1)
j )

6: if Lcond
D (β̂(t−1))− Lcond

D (β̂(t))) < ε then
7: return β̂(t)

8: error ”not converged in tmax iterations”

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization

L2-Regularized Logistic Regression (Newton)

Newton update rule:

β̂(t+1) := β̂(t) + µ(H(t))−1∇β̂(Lcond
D )(t)

(∇β̂L
cond
D )(t) =



∑N
n=1

(
yn − ŷ

(t)
n

)
∑N

n=1 xn,1
(
yn − ŷ

(t)
n

)
−2λβ̂

(t)
1

...∑N
n=1 xn,M

(
yn − ŷ

(t)
n

)
−2λβ̂

(t)
M


H(t) =

N∑
n=1

−ŷ (t)
n

(
1− ŷ

(t)
n

)
xnx

T
n −2λI
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Machine Learning 4. Hyperparameter Optimization

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization
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Machine Learning 4. Hyperparameter Optimization

What is Hyperparameter Optimization?

I Most models and learning algorithms have parameters that cannot be
learned by minimizing the objective function, because either

I the objective function would be minimized for a trivial value, e.g.,
λ = 0, or

I the parameters affect the learning algorithm, e.g., learning rate.

I These parameters are called hyperparameters λ and they
parametrize a learning algorithm Aλ.

I choose suitable hyperparameters λ

I use Aλ to map the training data Dtrain to a prediction function ŷ by
minimizing some loss L(D, ŷ) over the training data.
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Machine Learning 4. Hyperparameter Optimization

What is Hyperparameter Optimization?

I Identifying good values for the hyperparameters λ is called
hyperparameter optimization.

I hyperparameter optimization is a second level optimization

arg min
λ∈Λ

L(Dvalid,Aλ(Dtrain)) = arg min
λ∈Λ

Ψ(λ)

where
I Ψ is the hyperparameter response function and

I Dvalid a validation data
(aka calibration data and holdout data).
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Machine Learning 4. Hyperparameter Optimization

Why Hyperparameter Optimization
I So far only model parameters were optimized.

I Values for hyperparameters (such as regularization λ and
learning rate µ) came “out of the blue”.

I Hyperparameters can have a big impact on the prediction quality.
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Machine Learning 4. Hyperparameter Optimization

Grid Search
I Assume we have Q hyperparameters λ1, . . . , λQ

I Choose for each hyperparameter λq a set of values Λq.

I Λ :=
∏Q

q=1 Λq is then a grid of hyperparameters.

I Choose the hyperparameter combination λ ∈ Λ with best performance
on Dvalid.
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Machine Learning 4. Hyperparameter Optimization

Random Search
I Instead of trying hyperparameter combinations on a grid,

try random hyperparameter combinations λ for Λ
(within a reasonable range).

I Usually slightly better results than grid search.
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Machine Learning 4. Hyperparameter Optimization

What is the Validation Data?

I Whenever a learning process depends on a hyperparameter,
the hyperparameter can be estimated by picking the value with the
lowest error.

I If this is done on test data, one actually uses test data in the training
process (“train on test”), thereby lessen its usefulness for estimating
the test error.

I Therefore, one splits the training data again in
I (proper) training data and

I validation data.

I The validation data figures as test data during the training process.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 26



Machine Learning 4. Hyperparameter Optimization

Cross Validation

Instead of a single split into

training data, (validation data,) and test data

K -fold cross validation splits the data in K parts (of roughly equal size)

D = D1 ∪ D2 ∪ · · · ∪ DK , Dk pairwise disjoint

and averages performance over K learning problems

D(k)
train := D \ Dk , D(k)

test := Dk , k = 1, . . . ,K

Common is 5- and 10-fold cross validation.

N-fold cross validation is also known as leave one out.
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Machine Learning 4. Hyperparameter Optimization

Cross Validation

How many folds to use in K -fold cross validation?

K = N / leave one out:

I approximately unbiased for the true prediction error.

I high variance as the N training sets are very similar.

I in general computationally costly
as N different models have to be learnt.

K = 5:

I lower variance.

I bias could be a problem,
due to smaller training set size the prediction error could
be overestimated.
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Machine Learning 4. Hyperparameter Optimization

Summary
I The problem of underfitting can be overcome by using

more complex models, e.g., having
I variable interactions as in polynomial models.

I The problem of overfitting can be overcome by
I model selection / variable selection as well as by

I (parameter) shrinkage.

I Applying L2-regularization to Linear and Logistic Regression requires
only few changes in the learning algorithms.

I Shrinkage introduces a hyperparameter λ that cannot be learned by
direct loss minimization.

I Estimating the best hyperparameters can be considered as a
meta-learning problem. They can be estimated e.g. by

I Grid Search or
I Random Search — both using validation data.
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Machine Learning

Further Readings

I [James et al., 2013, chapter 3], [Murphy, 2012, chapter 7], [Hastie
et al., 2005, chapter 3].
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Machine Learning
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