
Machine Learning

Machine Learning
B. Supervised Learning: Nonlinear Models

B.1. Nearest-Neighbor Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Machine Learning

Syllabus
Fri. 26.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 2.11. (2) A.1 Linear Regression
Fri. 9.11. (3) A.2 Linear Classification
Fri. 16.11. (4) A.3 Regularization
Fri. 23.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 30.11. (6) B.1 Nearest-Neighbor Models
Fri. 7.12. (7) B.4 Support Vector Machines
Fri. 14.12. (8) B.3 Decision Trees
Fri. 21.12. (9) B.5 A First Look at Bayesian and Markov Networks

— Christmas Break —
Fri. 11.1. (10) B.2 Neural Networks

C. Unsupervised Learning
Fri. 18.1. (11) C.1 Clustering
Fri. 25.1. (12) C.2 Dimensionality Reduction
Fri. 1.2. (13) C.3 Frequent Pattern Mining
Fri. 8.2. (14) Q&A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Machine Learning

Outline

1. Distance Measures

2. K -Nearest Neighbor Models

3. Scalable Nearest Neighbor

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Machine Learning 1. Distance Measures

Outline

1. Distance Measures

2. K -Nearest Neighbor Models

3. Scalable Nearest Neighbor

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Machine Learning 1. Distance Measures

Motivation
So far, regression and classification methods covered in the lecture can be
used for

I numerical variables,

I binary variables (re-interpreted as numerical), and

I nominal variables (coded as set of binary indicator variables).

often called scalar variables.

Often one is also interested in more complex variables such as

I set-valued variables,

I sequence-valued variables (e.g., strings),

I . . .

often called structured variables or complex variables.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Note: A complex variable in this sense has nothing to do with complex numbers.

Machine Learning 1. Distance Measures

Motivation

There are two kinds of approaches to deal with complex variables:

I. feature extraction
1. derive binary or numerical variables,
2. then use standard methods on the feature vectors.

II. kernel methods
1. establish a distance measure between two values,
2. then use methods that use only distances between objects

(but no feature vectors).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 33

Machine Learning 1. Distance Measures

Distance measures
Let d be a distance measure (also called metric) on a set X , i.e.,

d : X ×X → R+
0

with

1. d is positiv definite: d(x , y) ≥ 0 and d(x , y) = 0⇔ x = y

2. d is symmetric: d(x , y) = d(y , x)

3. d is subadditive: d(x , z) ≤ d(x , y) + d(y , z)
(triangle inequality)

(for all x , y , z ∈ X .)

Example: Euclidean metric on X := Rn:

d(x , y) := (
n∑

i=1

(xi − yi)
2)

1
2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 33

Machine Learning 1. Distance Measures

Minkowski Metric / Lp metric
Minkowski Metric / Lp metric on X := Rn:

d(x , y) := (
n∑

i=1

|xi − yi |p)
1
p

with p ∈ R, p ≥ 1.

p = 1 (taxicab distance; Manhattan distance):

d(x , y) :=
n∑

i=1

|xi − yi |

p = 2 (euclidean distance):

d(x , y) := (
n∑

i=1

(xi − yi)
2)

1
2

p =∞ (maximum distance; Chebyshev distance):

d(x , y) :=
n

max
i=1
|xi − yi |

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 33

Machine Learning 1. Distance Measures

Minkowski Metric / Lp metric / Example

Example:

x :=

 1
3
4

 , y :=

 2
4
1



dL1(x , y) =|1− 2|+ |3− 4|+ |4− 1| = 1 + 1 + 3 = 5

dL2(x , y) =
√

(1− 2)2 + (3− 4)2 + (4− 1)2 =
√

1 + 1 + 9 =
√

11 ≈ 3.32

dL∞(x , y) = max{|1− 2|, |3− 4|, |4− 1|} = max{1, 1, 3} = 3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 33

Machine Learning 1. Distance Measures

Similarity measures

Instead of a distance measure sometimes similarity measures are used,
i.e.,

sim : X ×X → R+
0

with

I sim is symmetric: sim(x , y) = sim(y , x).

Some similarity measures have stronger properties:

I sim is discerning: sim(x , y) ≤ 1 and sim(x , y) = 1⇔ x = y

I sim(x , z) ≥ sim(x , y) + sim(y , z)− 1.

Some similarity measures have values in [−1, 1] or even R
where negative values denote “dissimilarity”.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 33

Machine Learning 1. Distance Measures

Distance vs. Similarity measures

A discerning similarity measure can be turned into a semi-metric (pos. def.
& symmetric, but not necessarily subadditive) via

d(x , y) := 1− sim(x , y)

In the same way, a metric can be turned into a discerning similarity
measure
(with values possibly in]−∞, 1]).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 33

Machine Learning 1. Distance Measures

Cosine Similarity
The angle between two vectors in RN can be used as distance measure

d(x , y) := angle(x , y) := arccos(
〈x , y〉

||x ||2 ||y ||2
)

To avoid the arccos, often the cosine of the angle is used as similarity
measure (cosine similarity):

sim(x , y) := cos angle(x , y) :=
〈x , y〉

||x ||2 ||y ||2

Example:

x :=

 1
3
4

 , y :=

 2
4
1



sim(x , y) =
1 · 2 + 3 · 4 + 4 · 1√

1 + 9 + 16
√

4 + 16 + 1
=

18√
26
√

21
≈ 0.77

cosine similarity is not discerning as vectors with the same direction but of
arbitrary length have angle 0 and thus similarity 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 33

Machine Learning 1. Distance Measures

Distances for Nominal Variables
1. Binary variables:

I there is only one reasonable distance measure:

d(x , y) := 1− I(x = y) with I(x = y) :=

{
1 if x = y
0 otherwise

I This coincides with
I L∞, 1

2L1 and 1√
2
L2 distance

for the indicator/dummy variables.

2. Nominal variables (with more than two possible values):

I The same distance measure is useful.

3. Hierarchical variables
(i.e., a nominal variable with levels arranged in a hierarchy)

I there are more advanced distance measures (not covered here).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 33

Machine Learning 1. Distance Measures

Distances for Set-valued Variables
For set-valued variables (which values are subsets of a set A) the
Hamming distance often is used:

d(x , y) := |(x \ y) ∪ (y \ x)| = |{a ∈ A | I(a ∈ x) 6= I(a ∈ y)}|

(= the number of elements contained in only one of the two sets).

Example:

d({a, e, p, l}, {a, b, n}) = 5, d({a, e, p, l}, {a, e, g , n, o, r}) = 6

Also often used is the similarity measure Jaccard coefficient:

sim(x , y) :=
|x ∩ y |
|x ∪ y |

Example:

sim({a, e, p, l}, {a, b, n}) =
1

6
, sim({a, e, p, l}, {a, e, g , n, o, r}) =

2

8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 33

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

edit distance / Levenshtein distance:

d(x , y) := minimal number of single character deletions, insertions

or substitutions to transform x in y

Examples:

d(man,men) =

1

d(house, spouse) =

2

d(order, express order) =

8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 33

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

edit distance / Levenshtein distance:

d(x , y) := minimal number of single character deletions, insertions

or substitutions to transform x in y

Examples:

d(man,men) =1

d(house, spouse) =2

d(order, express order) =8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 33

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

The edit distance is computed recursively. With

x1:i := (xi ′)i ′=1,...,i = (x1, x2, . . . , xi), i ∈ N

we compute the number of operations to transform x1:i into y1:j as

c(x1:i , y1:j) := min{ c(x1:i−1, y1:j) + 1, // delete xi , x1:i−1 y1:j
c(x1:i , y1:j−1) + 1, // x1:i y1:j−1, insert yj
c(x1:i−1, y1:j−1) + I (xi 6= yj)} // x1:i−1 y1:j−1, substitute yj

for xi

starting from

c(x1:0, y1:j) = c(∅, y1:j) := j // insert y1, . . . , yj
c(x1:i , y1:0) = c(x1:i , ∅) := i // delete x1, . . . , xi

Such a recursive computing scheme is called dynamic programming.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 33

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused, exhausted).

e x c u s e d

0 1 2 3 4 5 6 7
e 1
x 2
h 3
a 4
u 5
s 6
t 7
e 8
d 9

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 33

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused, exhausted).

e x c u s e d

0 1 2 3 4 5 6 7
e 1 0
x 2 1
h 3 2
a 4 3
u 5 4
s 6 5
t 7 6
e 8 7
d 9 8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 33

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused, exhausted).

e x c u s e d

0 1 2 3 4 5 6 7
e 1 0 1
x 2 1 0
h 3 2 1
a 4 3 2
u 5 4 3
s 6 5 4
t 7 6 5
e 8 7 6
d 9 8 7

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 33

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused, exhausted).

e x c u s e d

0 1 2 3 4 5 6 7
e 1 0 1 2
x 2 1 0 1
h 3 2 1 1
a 4 3 2 2
u 5 4 3 3
s 6 5 4 4
t 7 6 5 5
e 8 7 6 6
d 9 8 7 7

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 33

Machine Learning 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused, exhausted).

e x c u s e d

0 1 2 3 4 5 6 7
e 1 0 1 2 3 4 5 6
x 2 1 0 1 2 3 4 5
h 3 2 1 1 2 3 4 5
a 4 3 2 2 2 3 4 5
u 5 4 3 3 2 3 4 5
s 6 5 4 4 3 2 3 4
t 7 6 5 5 4 3 3 4
e 8 7 6 6 5 4 3 4
d 9 8 7 7 6 5 4 3

The Levenshtein distance is the last entry of the matrix.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 33

Machine Learning 2. K -Nearest Neighbor Models

Outline

1. Distance Measures

2. K -Nearest Neighbor Models

3. Scalable Nearest Neighbor

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 33

Machine Learning 2. K -Nearest Neighbor Models

Neighborhoods

Let d be a distance measure.
For a dataset

D ⊆ X × Y

and x ∈ X let
D = {(x1, y1), (x2, y2), . . . , (xN , yN)}

be an enumeration with increasing distance to x , i.e.,

d(x , xn) ≤ d(x , xn+1), n = 1, . . . ,N

(ties broken arbitrarily).
The first K ∈ N points of such an enumeration, i.e.,

CK (x) := {(x1, y1), (x2, y2), . . . (xK , yK)}

are called a K -neighborhood of x (in D).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 33

Machine Learning 2. K -Nearest Neighbor Models

Nearest Neighbor Regression and Classification Models
The K -nearest neighbor regressor

ŷ(x) :=
1

K

∑
(x ′,y ′)∈CK (x)

y ′

The K -nearest neighbor classifier

p̂(Y = y | x) :=
1

K

∑
(x ′,y ′)∈CK (x)

I(y = y ′)

and then predict the class with maximal predicted probability

ŷ(x) := arg max
y∈Y

p̂(Y = y | x)

i.e., the majority class in the neighborhood.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 33

Machine Learning 2. K -Nearest Neighbor Models

Nearest Neighbor Regression Algorithm

1 predict-knn-reg(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 allocate array D of size N
3 for n := 1 : N:
4 Dn := d(q, xn)
5 C := argmin-k(D,K)

6 ŷ := 1
K

∑K
k=1 yCk

7 return ŷ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 33

Machine Learning 2. K -Nearest Neighbor Models

Nearest Neighbor Classification Algorithm

1 predict-knn-class(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × Y,K ∈ N, d):
2 allocate array D of size N
3 for n := 1 : N:
4 Dn := d(q, xn)
5 C := argmin-k(D,K)
6 allocate array p̂ of size |Y|
7 for k := 1 : K :
8 p̂Ck

:= p̂Ck
+ 1/K

9 return p̂

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 33

Machine Learning 2. K -Nearest Neighbor Models

Compute the argmin

1 argmin-k(x ∈ RN ,K ∈ N) :
2 allocate array T of size K
3 for n = 1 : min(K ,N):
4 insert-bottomk(T1:n, n, πx , 1)
5 for n = K + 1 : N:
6 if xn < xTK

:
7 insert-bottomk(T , n, πx , 0)
8 return T
9

10 insert-bottomk(T ∈ XK , n ∈ X , π : X → R, s ∈ N) :
11 k := find-sorted(T1:K−s , n, π)
12 for l := K : k + 1 decreasing:
13 Tl := Tl−1
14 Tk+1 := n

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 33

Note: πx (n) := xn comparison by x-values. Here, X := N.

Machine Learning 2. K -Nearest Neighbor Models

Compute the argmin / find (naive)

1 find-sorted-linear(x ∈ XK , z ∈ X , π : X → R) :
2 k := K
3 while k > 0 and π(z) < π(xk):
4 k := k − 1
5 return k

I requires
I x is sorted (increasingly w.r.t. π)

I returns smallest index k with π(xk) ≤ π(z)
I 0, if π(z) < π(x1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 33

Note: Esp. for larger K it is better to use binary search.

Machine Learning 2. K -Nearest Neighbor Models

Decision Boundaries

For 1-nearest neighbor, the predictor space is partitioned in regions of
points that are closest to a given data point:

regionD(x1), regionD(x2), . . . , regionD(xN)

with

regionD(x) := {x ′ ∈ X | d(x ′, x) ≤ d(x ′, x ′′) ∀(x ′′, y ′′) ∈ D}

These regions often are called cells,
the whole partition a Voronoi tesselation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 33

Machine Learning 2. K -Nearest Neighbor Models

Decision Boundaries

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 33

Machine Learning 2. K -Nearest Neighbor Models

Decision Boundaries

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 33

Machine Learning 3. Scalable Nearest Neighbor

Outline

1. Distance Measures

2. K -Nearest Neighbor Models

3. Scalable Nearest Neighbor

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 33

Machine Learning 3. Scalable Nearest Neighbor

Complexity of K -Nearest Neighbor Classifier
The K -Nearest Neighbor classifier does not need any learning algorithm
I as it just stores all the training examples.

On the other hand, predicting using a K -nearest neighbor classifier is slow:

I To predict the class of a new point x , the
distance d(x , xi) from x

to each of the N training examples
(x1, y1), . . . , (xN , yN)

has to be computed.

I For a predictor space X := RM , each such computation needs O(M)
operations.

I We then keep track of the K points with the smallest distance.

In total one needs O(NM + NK) operations.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 33

Machine Learning 3. Scalable Nearest Neighbor

Partial Distances / Lower Bounding

In practice, nearest neighbor classifiers often can be accelerated by several
methods.
Partial distances:
Compute the distance to each training point x ′ only partially, e.g.,

dr (x , x ′) := (
r∑

m=1

(xm − x ′m)2)
1
2 , r ≤ M

As dr is non-decreasing in r , once dr (x , x ′) exceeds the K -th smallest
distance computed so far, the training point x ′ can be dropped.

This is a heuristic:
it may accelerate computations, but it also may slow it down
(as there are additional comparisons of the partial distances with the K
smallest distance).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 33

Machine Learning 3. Scalable Nearest Neighbor

Nearest Neighbor Classification Algorithm
1 predict-knn-reg(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 allocate array D of size N
3 for n := 1 : N:
4 Dn := d(q, xn)
5 C := argmin-k(D,K)

6 ŷ := 1
K

∑K
k=1 yCk

7 return ŷ

1 predict-knn-class(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 C := π1(argclos-k(q, x1, x2, . . . , xN ,K))

3 ŷ := 1
K

∑K
k=1 yCk

4 return ŷ
5

6 argclos-k(q ∈ RM , x1, . . . , xN ∈ RM ,K ∈ N) :
7 allocate array D of size N
8 for n := 1 : N:
9 Dn := d(q, xn)

10 C := argmin-k(D,K)
11 return {(Ck ,DCk

) | k = 1 : |C |}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 33

Machine Learning 3. Scalable Nearest Neighbor

1 predict-knn-reg(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 allocate array D of size N
3 for n := 1 : N:
4 Dn := d(q, xn)
5 C := argmin-k(D,K)

6 ŷ := 1
K

∑K
k=1 yCk

7 return ŷ

1 predict-knn-class(q ∈ RM ,Dtrain := {(x1, y1), . . . , (xN , yN)} ∈ RM × R,K ∈ N, d):
2 C := π1(argclos-k(q, x1, x2, . . . , xN ,K))

3 ŷ := 1
K

∑K
k=1 yCk

4 return ŷ
5

6 argclos-k(q ∈ RM , x1, . . . , xN ∈ RM ,K ∈ N) :
7 allocate array D of size N
8 for n := 1 : N:
9 Dn := d(q, xn)

10 C := argmin-k(D,K)
11 return {(Ck ,DCk

) | k = 1 : |C |}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 33

Machine Learning 3. Scalable Nearest Neighbor

Find Neighbors / Without Lower Bounding

1 argclos-k(q ∈ RM , x1, . . . , xN ∈ RM ,K ∈ N) :
2 allocate array T of size K for pairs N× R
3 for n = 1 : min(K ,N):

4 d :=
∑M

m=1(qm − xn,m)2

5 insert-bottomk(T , (n, d), π2, 1)
6 for n = K + 1 : N:

7 d :=
∑M

m=1(qm − xn,m)2

8 if d < π2(TK):
9 insert-bottomk(T , (n, d), π2, 0)

10 return T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 33

Note: argclos-K returns the K points closest to q and their distances.
π2(n, d) := d comparison by second component (distance).

Machine Learning 3. Scalable Nearest Neighbor

Find Neighbors / With Lower Bounding

1 argclos-k(q ∈ RM , x1, . . . , xN ∈ RM ,K ∈ N) :
2 allocate array T of size K for pairs N× R
3 for n = 1 : min(K ,N):

4 d :=
∑M

m=1(qm − xn,m)2

5 insert-bottomk(T , (n, d), π2, 1)
6 for n = K + 1 : N:
7 d := 0
8 m := 1
9 while m ≤ M and d < π2(TK):

10 d := d + (qm − xn,m)2

11 m := m + 1
12 if d < π2(TK):
13 insert-bottomk(T , (n, d), π2, 0)
14 return T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 33

Note: argclos-K returns the K points closest to q and their distances.
π2(n, d) := d comparison by second component (distance).

Machine Learning 3. Scalable Nearest Neighbor

Search trees

Search trees:
Do not compute the distance of a new point x to all training examples,
but

1. organize the training examples as a tree (or a DAG) with
I sets of training examples at the leaves and

I a prototype (e.g., the mean of the training examples at all descendent
leaves) at each intermediate node.

2. starting at the root, recursively
I compute the distance to all children of the actual node and

I branch to the child with the smallest distance,

3. compute distances only to training examples in the leaf finally found.

This is an approximation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 33

Machine Learning 3. Scalable Nearest Neighbor

Search trees

x2

x1

x2

x1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 33

Machine Learning 3. Scalable Nearest Neighbor

Search trees

x2

x1

x2

x1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 33

Machine Learning 3. Scalable Nearest Neighbor

Approximate Nearest Neighbor

I for low dimensions, k-d trees (k-dimensional trees) can be used
I only useful for very low dimensions (2d, 3d)

I in computational geometry, computer graphics, computer vision

I for higher dimensions locality-sensitive hashing performs better
I only works with specific distances (Euclidean/L2, L1, Hamming)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 33

Machine Learning 3. Scalable Nearest Neighbor

Locality-Sensitive Hashing [?]
I idea: create a hash key function h that puts

I close instances into the same bin, but

I far instances into different bins.

allowing some errors.

I for x ∈ RM , the discretized projection on a random line is

ha,b,r (x) :=

⌊
aT x + b

s

⌋
, a ∈ RM , b ∈ [0, s], s ∈ R+

where am ∼ N (0, 1), b ∼ unif(0, s)

I use the concatenation of L such projection keys as hash key

hA,b,r (x) := (hAl,.,bl ,s(x))l=1,...,L

= (

⌊
1

s
(Ax + b)l

⌋
)l=1,...,L, A ∈ RL×M , b ∈ [0, s]L, s ∈ R+

I build H such hash maps and test all points found in any of them.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 33

Machine Learning 3. Scalable Nearest Neighbor

Editing
Editing / Pruning / Condensing:
shrink the set of training data points,

e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells of
points of the same class.

Xedited := {(x , y) ∈ X | ∃(x ′, y ′) ∈ X ,R(x ′) ∩ R(x) 6= ∅ and y ′ 6= y}

This basic editing algorithm
I retains the decision function,

I has complexity O(M3Nb
M
2
c logN)

(with bxc := max{n ∈ N | n ≤ x}; Duda et al. 2001, p. 186).

See e.g., Ottmann/Widmayer 2002, p. 501–515 for computing Voronoi
diagrams in two dimensions.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 33

Machine Learning 3. Scalable Nearest Neighbor

Editing

1: procedure knn-edit-training-data(Dtrain ⊆ RM × Y)
2: compute Voronoi cells R(x) for all (x , y) ∈ Dtrain,
3: esp. Voronoi neighbors N(x) := {(x ′, y ′) ∈ Dtrain | R(x) ∩ R(x ′) 6= ∅}
4: E := ∅
5: for (x , y) ∈ Dtrain do
6: hasNeighborOfOtherClass := false
7: for (x ′, y ′) ∈ N(x) do
8: if y 6= y ′ then
9: hasNeighborOfOtherClass := true

10: if not hasNeighborOfOtherClass then
11: E := E ∪ {(x , y)}
12: return Dtrain \ E

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 33

Machine Learning 3. Scalable Nearest Neighbor

Editing

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 33

Machine Learning 3. Scalable Nearest Neighbor

Editing

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 33

Machine Learning 3. Scalable Nearest Neighbor

Summary

I Simple classification and regression models can be built by
I averaging over target values (regression)

I counting the occurrences of the target class (classification)

of training instances close by (measured in some distance measure).

I The nearest neighbor takes always a fixed number K of nearest points into
account.
I Alternatively, one also could weight points with some similarity measure

(called kernel or Parzen window),
⇒ the model is called kernel regression and kernel classification.

I There are no learning tasks for these models,
as simply all training instances are stored (“memory-based methods”).

I Therefore, to compute predictions is more costly than for say linear models.
There are several acceleration techniques
I partial distances / lower bounding

I search trees / locality-sensitive hashing

I editing

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 33

Machine Learning

Further Readings

I [?, chapter 13.3, 2.3.2], [?, chapter 1.4.2, 14.1+2+4], [?, chapter
2.2.3,].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 33

Machine Learning

References

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 33

	1. Distance Measures
	2. K-Nearest Neighbor Models
	3. Scalable Nearest Neighbor
	Appendix

