

## Machine Learning

B. Supervised Learning: Nonlinear Models
B.2. Neural Networks

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

# Shivers/total

## Syllabus

Fri. 26.10. (1)Introduction A. Supervised Learning: Linear Models & Fundamentals Fri. 2.11. (2) A.1 Linear Regression (3) A.2 Linear Classification Fri. 9.11. Fri. 16.11. (4) A.3 Regularization Fri. 23.11. (5) A.4 High-dimensional Data B. Supervised Learning: Nonlinear Models Fri. 30.11. (6) B.1 Nearest-Neighbor Models **B.2 Neural Networks** Fri. 7.12. (7) Fri. 14.12. (8) **B.3 Decision Trees** Fri. 21.12. (9)**B.4 Support Vector Machines** — Christmas Break — Fri. 11.1. (10)B.5 A First Look at Bayesian and Markov Networks C. Unsupervised Learning Fri. 18.1. (11)C.1 Clustering Fri. 25.1. (12)C.2 Dimensionality Reduction Fri. 1.2. (13)C.3 Frequent Pattern Mining Fri. 8.2. (14)Q&A

# Jniversitati

### Outline

1. Network Topologies

- 2. Stochastic Gradient Descent (Backpropagation)
- 3. Regularization

## Outline

1. Network Topologies

2. Stochastic Gradient Descent (Backpropagation)



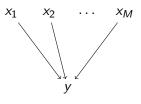
## Logistic Regression

### logistic regression:

$$\hat{y}(x) := \hat{p}(y = 1 \mid x) = \text{logistic}(\beta^T x), \quad x \in \mathbb{R}^M$$

Note:  $logistic(x) := 1/(1 + e^{-x}).$ 

## Logistic Regression (0 hidden layers)



input layer

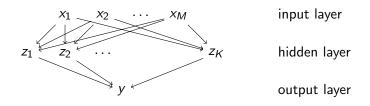
output layer

### logistic regression:

$$\hat{y}(x) := \hat{p}(y = 1 \mid x) = \text{logistic}(\beta^T x), \quad x \in \mathbb{R}^M$$

Note:  $logistic(x) := 1/(1 + e^{-x})$ .

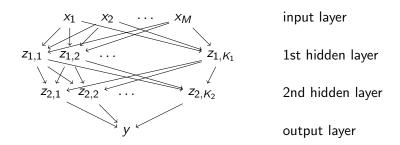
## Feedforward Neural Network (1 hidden layer)



feedforward neural network (1 hidden layer):

$$z_k(x) := \operatorname{logistic}(\beta_{1,k}^T x), \quad k = 1, \dots, K, x \in \mathbb{R}^M$$
  
 $\hat{y}(x) := \operatorname{logistic}(\beta_2^T z(x))$ 

## Feedforward Neural Network (2 hidden layers)

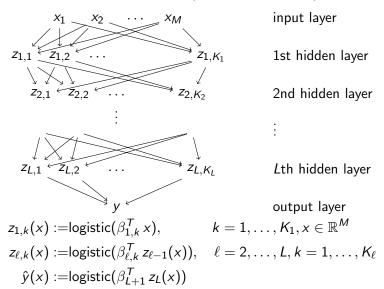


feedforward neural network (2 hidden layers):

$$z_{1,k}(x) := \operatorname{logistic}(\beta_{1,k}^T x), \qquad k = 1, \dots, K_1, \quad x \in \mathbb{R}^M$$
  
 $z_{2,k}(x) := \operatorname{logistic}(\beta_{2,k}^T z_1(x)), \quad k = 1, \dots, K_2$   
 $\hat{y}(x) := \operatorname{logistic}(\beta_3^T z_2(x))$ 

# Jan State

## Feedforward Neural Network (L hidden layers)





## Different Targets y

Binary classification:

$$\hat{y}(x) := \hat{p}(y = 1 \mid x) = \operatorname{logistic}(\beta_{L+1}^T z_L(x)),$$

$$\beta_{L+1} \in \mathbb{R}^{K_L}$$

Regression:

$$\hat{y}(x) := \beta_{L+1}^T z_L(x),$$

$$\beta_{L+1} \in \mathbb{R}^{K_L}$$

Regression with multiple outputs:

$$\hat{y}(x) := \beta_{L+1} z_L(x),$$

$$\beta_{L+1} \in \mathbb{R}^{T \times K_L}$$
 a matrix!

Multi-class classification:

$$\hat{y}(x) := \hat{p}(y \mid x) = \operatorname{softmax}(\beta_{L+1}z_L(x)),$$

$$\beta_{L+1} \in \mathbb{R}^{T \times K_L}$$

Notes:

- L hidden layers
- ▶ at hidden nodes always are logistic/sigmoid functions (activation function, transfer function).

### Softmax

$$\begin{aligned} \text{softmax} : & \mathbb{R}^T \to \mathbb{R}^T \\ \text{softmax}(u) := & \left( \frac{e^{u_t}}{\sum_{s=1}^T e^{u_s}} \right)_{t=1:T}, \quad u \in \mathbb{R}^T \\ & = & \left( \frac{\frac{e^{u_1}}{\sum_{s=1}^T e^{u_s}}}{\sum_{s=1}^T e^{u_s}} \right) \\ & = & \left( \frac{e^{u_2}}{\sum_{s=1}^T e^{u_s}} \right) \end{aligned}$$

## Softmax



#### binary classification:

$$\begin{split} \hat{y}(x) &:= \hat{p}(y = 1 \mid x) = \mathsf{logistic}(\beta_{L+1}^T z_L(x)) \\ &= \mathsf{logistic}(u_{L+1}(x)), \quad u_{L+1}(x) := \beta_{L+1}^T z_L(x), \beta_{L+1} \in \mathbb{R}^{K_L} \\ \mathsf{logistic}(u) &:= \frac{1}{1 + e^{-\mu}} \end{split}$$

#### multi-class classification:

$$\hat{y}(x) := \hat{p}(y \mid x) = (\hat{p}(y = t \mid x))_{t=1:T} = \text{softmax}(\beta_{L+1}z_L(x))$$
  
= softmax $(u_{L+1}(x)), \quad u_{L+1}(x) := \beta_{L+1}z_L(x), \beta_{L+1} \in \mathbb{R}^{T \times T}$ 

$$\mathsf{softmax}(u) := \left( \frac{e^{u_t}}{\sum^T \cdot e^{u_s}} \right) \qquad , \quad u \in \mathbb{R}^T$$

# Jrivers/

## Softmax / Generalization of the Logistic

binary classification:

$$\begin{split} \hat{y}(x) &:= \hat{p}(y=1 \mid x) = \mathsf{logistic}(\beta_{L+1}^T z_L(x)) \\ &= \mathsf{logistic}(u_{L+1}(x)), \quad u_{L+1}(x) := \beta_{L+1}^T z_L(x), \beta_{L+1} \in \mathbb{R}^{K_L} \\ &\mathsf{logistic}(u) := \frac{1}{1+e^{-u}} = \frac{e^u}{1+e^u} = \begin{pmatrix} \frac{e^0}{e^0+e^u} \\ \frac{e^u}{e^0+e^u} \end{pmatrix} = (\mathsf{softmax}(\begin{pmatrix} 0 \\ u \end{pmatrix}))_2 \\ \begin{pmatrix} \hat{p}(y=0 \mid x) \\ \hat{p}(y=1 \mid x) \end{pmatrix} = \mathsf{softmax}(\begin{pmatrix} 0 \\ u_{L+1}(x) \end{pmatrix}) \end{split}$$

multi-class classification:

$$\hat{y}(x) := \hat{p}(y \mid x) = (\hat{p}(y = t \mid x))_{t=1:T} = \text{softmax}(\beta_{L+1}z_L(x))$$
  
= softmax $(u_{L+1}(x)), \quad u_{L+1}(x) := \beta_{L+1}z_L(x), \beta_{L+1} \in \mathbb{R}^{T \times T}$ 

$$\mathsf{softmax}(u) := \left(\frac{\mathsf{e}^{u_t}}{\sum_{t=1}^T \mathsf{e}^{u_s}}\right), \quad u \in \mathbb{R}^T$$

# Still de angle

## Softmax Properties

$$\operatorname{softmax}(u) := \left(\frac{e^{u_t}}{\sum_{s=1}^T e^{u_s}}\right)_{t=1:T}, \quad u \in \mathbb{R}^T$$

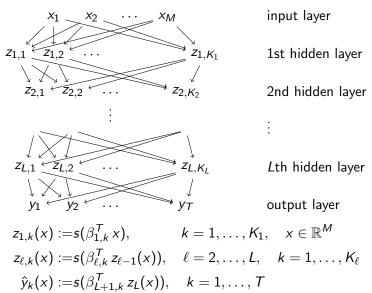
- ▶ softmax is a generalization of the logistic function from 2 to *T* classes.
- softmax is continuous and differentiable.
- softmax components sum to one:

$$\sum_{t=1}^{I} (\operatorname{softmax}(u))_{t} = 1$$

softmax in the limit approaches the maximum indicator:

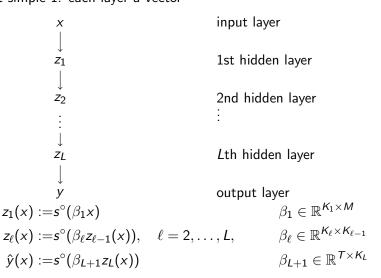
$$\lim_{a \to \infty} \operatorname{softmax}(a \cdot u) = (\mathbb{I}(u_t = u_{\mathsf{max}}))_{t=1:T}, \quad u_{\mathsf{max}} := \max_{s \in 1:T} u(s)$$

## Feedforward Neural Network (L hidden layers, T output

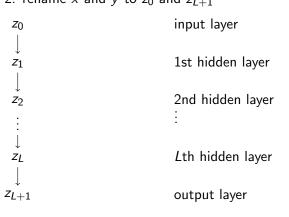


Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

# Feedforward Neural Network (*L* hidden layers, *T* outputs) make it simple 1: each layer a vector



# Feedforward Neural Network (L hidden layers, T outputs) make it simple 2: rename x and $\hat{y}$ to $z_0$ and $z_{L+1}$



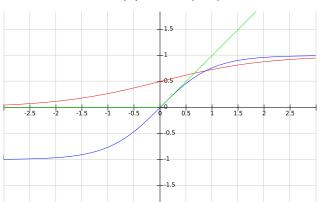
$$\begin{split} z_\ell(x) := & s^\circ \big(\beta_\ell \, z_{\ell-1}(x)\big), \quad \ell = 1, \dots, L+1 \\ & \text{with } z_0 := x, \quad \hat{y}(x) := z_{L+1}(x), \quad K_1 := M, \quad K_{L+1} := T \end{split} \qquad \beta_\ell \in \mathbb{R}^{K_\ell \times K_{\ell-1}}$$

# Jriversiter.

### **Activation Functions**

Nowadays, usually the **rectifier** is used as activation function *s* (such nodes are called **ReLU**: **rectified linear unit**):

$$rect(x) := \max(0, x)$$



red: logistic, blue: tanh, green: rect

## Network Topologies



- ▶ feedforward neural network (aka multilayer perceptron, MLP)
  - ► often just a single hidden layer is used
    - ► NN with single hidden layer is already a universal approximator
  - skip arcs can be used to connect layers skipping a hidden layer
  - usually layers are connected completely (fully connected layer), but sometimes sparse connections are used.
  - nodes & connections always form a DAG

#### recurrent neural network

- neural networks with backward connections / not a DAG.
- used in language modeling
- ▶ no simple probabilistic interpretation
- nowadays usually rolled out to a feedforward net with tied weights

#### ► Hopfield networks / associative memory:

symmetric connections between hidden units



## Outline

1. Network Topologies

2. Stochastic Gradient Descent (Backpropagation)



### Vector Calculus Refresh – Gradients & Jacobians

function with *N* inputs, single output:

$$f: \mathbb{R}^N \to \mathbb{R}$$
  
  $x \mapsto f(x_1, \dots, x_N)$ 

gradient (vector):

$$\nabla f(x) := \left(\frac{\partial f}{\partial x_n}(x)\right)_{n=1:N}$$

function/map with N inputs, M outputs:

$$f: \mathbb{R}^N \to \mathbb{R}^M$$
  
  $x \mapsto (f_m(x_1, \dots, x_N))_{m=1:M}$ 

Jacobian (matrix):

$$Df(x) := \left(\frac{\partial f_m}{\partial x_n}(x)\right)_{m=1:M,n=1:N}$$

### Vector Calculus Refresh – Chain Rule

### function composition:

$$X := \mathbb{R}^{N} \xrightarrow{f} Y := \mathbb{R}^{M} \xrightarrow{g} Z := \mathbb{R}$$

$$x \mapsto f(x)$$

$$y \mapsto g(y)$$

$$x \mapsto g \circ f(x) := g(f(x))$$

#### chain rule:

$$\nabla (g \circ f)(x) = Df(x)^{T}(\nabla g)(f(x))$$

## Vector Calculus Refresh – Elementwise Function Application

function with single input, single output:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f(x)$$

elementwise function application:

$$f^{\circ}: \mathbb{R}^{N} o \mathbb{R}^{N} \ x \mapsto (f(x_{n}))_{n=1:N} = \left(egin{array}{c} f(x_{1}) \ f(x_{2}) \ dots \ f(x_{n}) \end{array}
ight)$$
 fan:

its Jacobian:

Machine Learning

## hians

## Vector Calculus Refresh – Partial Gradients & Jacobians

function with *N* inputs, single output:

$$f: \mathbb{R}^N \to \mathbb{R}$$
  
  $x \mapsto f(x_1, \dots, x_N)$ 

partial gradient (vector):

$$\nabla_I f(x) := \left(\frac{\partial f}{\partial x_n}(x)\right)_{n \in I}, \quad I \subseteq \{1, \dots, N\}$$

function/map with N inputs, M outputs:

$$f: \mathbb{R}^N \to \mathbb{R}^M$$
  
  $x \mapsto (f_m(x_1, \dots, x_N))_{m=1:M}$ 

partial Jacobian (matrix):

$$D_{I}f(x) := \left(\frac{\partial f_{m}}{\partial x_{n}}(x)\right)_{m=1:M,n\in I} \quad I \subseteq \{1,\ldots,N\}$$

## Objective Function

feedforward neural network, L hidden layers with  $K_1, \ldots, K_l$  nodes each:

$$\begin{split} z_{\ell}(x) &:= s^{\circ}(\beta_{\ell} \, z_{\ell-1}(x)), \quad \ell = 1, \dots, L+1, \quad \beta_{\ell} \in \mathbb{R}^{K_{\ell} \times K_{\ell-1}} \\ & \text{with } z_{0} := x, \quad \hat{y}(x) := z_{L+1}(x), \quad K_{1} := M, \quad K_{L+1} := T \end{split}$$

objective function:

$$f(\beta) := \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(y_n, \hat{y}(x_n)) + \frac{\lambda}{2} ||\beta||^2 = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\beta; x_n, y_n) + \frac{\lambda}{2} ||\beta||^2$$

loss for single sample:

$$\mathcal{L}(\beta; x, y) := \mathcal{L}(y, z_{L+1}(x))$$



## feedforward neural network, L hidden layers with $K_1, \ldots, K_L$ nodes each:

$$egin{aligned} u_{\ell}(x) &:= eta_{\ell} \, z_{\ell-1}(x), \quad \ell = 1, \dots, L+1, \quad eta_{\ell} \in \mathbb{R}^{K_{\ell} imes K_{\ell-1}} \ z_{\ell}(x) &:= s^{\circ}(u_{\ell}(x)) \ & ext{with } z_{0} &:= x, \quad \hat{y}(x) := z_{L+1}(x), \quad K_{1} &:= M, \quad K_{L+1} &:= T \end{aligned}$$

### loss for single sample:

$$\mathcal{L}(\beta; x, y) := \mathcal{L}(y, z_{L+1}(x))$$



feedforward neural network, L hidden layers with  $K_1, \ldots, K_L$  nodes each:

$$egin{aligned} u_{\ell}(z_{\ell-1}) &:= eta_{\ell} \ z_{\ell-1}, \quad \ell = 1, \dots, L+1, \quad eta_{\ell} \in \mathbb{R}^{K_{\ell} imes K_{\ell-1}} \ &z_{\ell}(u_{\ell}) := s^{\circ}(u_{\ell}) \ & ext{with } z_{0} := x, \quad \hat{y}(x) := (z_{L+1} \circ u_{L+1} \circ z_{L} \circ u_{L} \circ \cdots \circ z_{1} \circ u_{1})(x), \quad K_{1} := M, \quad K_{L+1} := T \end{aligned}$$

loss for single sample:

$$\mathcal{L}(\beta; x, y) := \mathcal{L}(y, z_{L+1}(x)) = (\mathcal{L}_y \circ z_{L+1} \circ u_{L+1} \circ \cdots z_{\ell} \circ u_{\ell} \circ \cdots z_1 \circ u_1)(x)$$
 with pair loss  $\mathcal{L}_y(z_{L+1}) := \text{loss}(y, z_{L+1})$ 



## Objective Function

feedforward neural network, L hidden layers with  $K_1, \ldots, K_L$  nodes each:

$$egin{aligned} u_{\ell}(z_{\ell-1}) &:= eta_{\ell} \ z_{\ell-1}, \quad \ell = 1, \dots, L+1, \quad eta_{\ell} \in \mathbb{R}^{K_{\ell} imes K_{\ell-1}} \ &z_{\ell}(u_{\ell}) := s^{\circ}(u_{\ell}) \ & ext{with } z_{0} := x, \quad \hat{y}(x) := (z_{L+1} \circ u_{L+1} \circ z_{L} \circ u_{L} \circ \cdots \circ z_{1} \circ u_{1})(x), \quad K_{1} := M, \quad K_{L+1} := T \end{aligned}$$

loss for single sample:

$$\mathcal{L}(\beta;x,y) := \mathcal{L}(y,z_{L+1}(x)) = (\mathcal{L}_y \circ z_{L+1} \circ u_{L+1} \circ \cdots z_{\ell} \circ u_{\ell} \circ \cdots z_1 \circ u_1)(x)$$
 with pair loss  $\mathcal{L}_y(z_{L+1}) := \text{loss}(y,z_{L+1})$ 

its gradients:

$$\nabla_{\beta_{\ell,k}} \mathcal{L}(\beta) = D_{\beta_{\ell,k}} u_{\ell}(z_{\ell-1})^T \nabla (\mathcal{L}_y \circ z_{L+1} \circ u_{L+1} \circ \cdots z_{\ell+1} \circ u_{\ell+1} \circ z_{\ell}) (u_{\ell})$$

$$\nabla (\mathcal{L}_y \circ z_{L+1} \circ u_{L+1} \circ \cdots z_{\ell+1} \circ u_{\ell+1} \circ z_{\ell}) (u_{\ell})$$

$$= Dz_{\ell}^T Du_{\ell+1}^T \nabla (\mathcal{L}_y \circ z_{L+1} \circ u_{L+1} \circ \cdots z_{\ell+2} \circ u_{\ell+2} \circ z_{\ell+1}) (u_{\ell+1})$$



## Gradients / Recursion Scheme

single sample loss gradients:

$$\nabla_{\beta_{\ell,k}} \mathcal{L}(\beta) = D_{\beta_{\ell,k}} u_{\ell}(z_{\ell-1})^T \nabla (\mathcal{L}_y \circ z_{L+1} \circ u_{L+1} \circ \cdots z_{\ell+1} \circ u_{\ell+1} \circ z_{\ell}) (u_{\ell})$$

$$\nabla (\mathcal{L}_y \circ z_{L+1} \circ u_{L+1} \circ \cdots z_{\ell+1} \circ u_{\ell+1} \circ z_{\ell}) (u_{\ell})$$

$$= Dz_{\ell}^T Du_{\ell+1}^T \nabla (\mathcal{L}_y \circ z_{L+1} \circ u_{L+1} \circ \cdots z_{\ell+2} \circ u_{\ell+2} \circ z_{\ell+1}) (u_{\ell+1})$$

establishes a recursive computation scheme:

$$egin{aligned} 
abla_{eta_{\ell,k}} \mathcal{L}(eta) &= D_{eta_{\ell,k}} u_{\ell}(z_{\ell-1})^T g_{\ell}(u_{\ell}) \ g_{\ell}(u_{\ell}) &:= D z_{\ell}^T D u_{\ell+1}^T g_{\ell+1}(u_{\ell+1}) \ g_{L+1}(u_{L+1}) &:= D z_{L+1}^T 
abla \mathcal{L}_{y}(z_{L+1}) \end{aligned}$$



## Gradients / Components

$$u_{\ell}(z_{\ell-1}) := \beta_{\ell} z_{\ell-1}, \quad \ell = 1, \dots, L+1, \quad \beta_{\ell} \in \mathbb{R}^{K_{\ell} \times K_{\ell-1}}$$
  
 $z_{\ell}(u_{\ell}) := s^{\circ}(u_{\ell})$ 

single sample loss gradients:

$$egin{aligned} 
abla_{eta_{\ell,k}} \mathcal{L}(eta) &= D_{eta_{\ell,k}} u_{\ell}(z_{\ell-1})^T g_{\ell}(u_{\ell}) \ g_{\ell}(u_{\ell}) &:= D z_{\ell}^T D u_{\ell+1}^T g_{\ell+1}(u_{\ell+1}) \ g_{L+1}(u_{L+1}) &:= D z_{L+1}^T 
abla \mathcal{L}_y(z_{L+1}) \end{aligned}$$

components:

$$egin{aligned} Du_\ell &= eta_\ell \ Dz_\ell &= \mathsf{diag}(s'^\circ(u_\ell)) \end{aligned}$$

$$D_{\beta_{\ell,k}}u_{\ell}=e_k\,z_{\ell-1}^{\mathsf{T}}$$

$$abla_{eta_{\ell,k}} \mathcal{L}(eta) = z_{\ell-1} e_k^T g_{\ell}(u_{\ell}) 
\nabla_{eta_{\ell}} \mathcal{L}(eta) = g_{\ell}(u_{\ell}) z_{\ell}^T,$$

Note:  $e_k$  denotes the k-th unit vector:  $(e_k)_i := \mathbb{I}(k = j)$ .

 $\beta_{\ell}$  is a parameter matrix, thus  $\nabla_{\beta_{\ell}} \mathcal{L}(\beta)$  is a matrix-shaped gradient!

# Stivers/top

## Gradients / Sticking Everything Together

parameters:

$$\beta_{\ell} \in \mathbb{R}^{K_{\ell} \times K_{\ell-1}}, \quad \ell = 1 : L+1$$

feed forward:

$$z_0 := x$$
 $u_{\ell} := \beta_{\ell} z_{\ell-1}, \quad \ell = 1 : L+1$ 
 $z_{\ell} := s^{\circ}(u_{\ell})$ 

back propagation:

$$egin{aligned} g_{L+1}(u_{L+1}) &:= \operatorname{diag}(s'^{\circ}(u_{L+1})) \, 
abla \mathcal{L}_y(z_{L+1}) \ & 
abla_{eta} \mathcal{L}(eta) = g_{\ell}(u_{\ell}) \, z_{\ell-1}^T, \quad \ell = L+1 : 1 \; ext{backwards} \ & eta_{\ell}^{\mathsf{next}} &:= eta_{\ell} - \eta(
abla_{eta_{\ell}} \mathcal{L}(eta) + \lambda eta_{\ell}) \ & g_{\ell}(u_{\ell}) &:= \operatorname{diag}(s'^{\circ}(u_{\ell})) \, eta_{\ell+1}^T \, g_{\ell+1}(u_{\ell+1}) \end{aligned}$$



## $\mathsf{SGD} \ / \ \mathsf{Backpropagation}$

```
1 learn-nn-sgd(\mathcal{D}^{train} := \{(x_1, y_1), \dots, (x_N, y_N)\}, L, K, s, \nabla \mathcal{L}, \lambda, \eta, I\}:
       randomly initialize \beta_{\ell} \in \mathbb{R}^{K_{\ell} \times K_{\ell-1}}. \ell = 1: L+1
        for i := 1, ..., I:
            for (x_n, y_n) \in \mathcal{D}^{\text{train}} in random order:
                                                                                            [feed forward]
               z_0 := x_n
               for \ell := 1 \cdot I + 1
                   u_{\ell} := \beta_{\ell} z_{\ell-1}
                   z_{\ell} := s^{\circ}(u_{\ell})
               g_{l+1} := diag(s'^{\circ}(u_{l+1})) \nabla \mathcal{L}_{v_{\sigma}}(z_{l+1})
                                                                                            [back propagation]
               for \ell := l + 1 : 2 backwards:
                   g_{\ell-1} := \operatorname{diag}(s'^{\circ}(u_{\ell-1})) \beta_{\ell}^{T} g_{\ell}
                                                                                                            where
                   \beta_{\ell} := \beta_{\ell} - \eta_{i} (g_{\ell} z_{\ell-1}^{T} + \lambda \beta_{\ell})
                                                                                                                     L number of layers
                                                                                                                     K laver sizes
               \beta_1 := \beta_1 - \eta_i (g_1 z_0^T + \lambda \beta_1)
                                                                                                                     s activation function
13
                                                                                                                     \nabla \mathcal{L} loss gradient
            if converged(...):
                                                                                                                     \lambda regularization weight
                                                                                                                     \eta step length schedule
               return \beta
                                                                                                                     I number of iterations
        raise exception "not converged in I iterations"
16
```

### Outline

1. Network Topologies

2. Stochastic Gradient Descent (Backpropagation)

3. Regularization

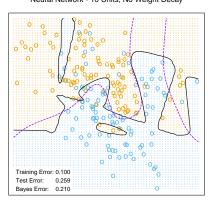
## Regularization of Neural Networks

- ▶ generic, working with any model:
  - ► L2 regularization
    - ► aka weight decay
    - most frequently used method
  - ► L1 regularization
  - number of iterations as hyperparameter (early stopping)
- specific for neural networks:
  - structural regularization:
    - sufficiently small number of layers and sizes of layers
    - compare number of parameters with sample size!
  - ► dropout [Srivastava et al., 2014]
    - use random sample of input nodes and hidden nodes for each instance during training
  - ► Batch normalization [loffe and Szegedy, 2015]
    - $\blacktriangleright$  standardize the values  $z_{\ell,k}$  for each layer (for a minibatch).
  - self-normalizing neural networks [Klambauer et al., 2017]

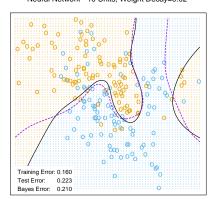
## L2 regularization / Example



#### Neural Network - 10 Units, No Weight Decay



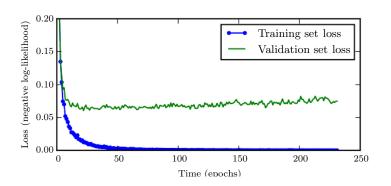
#### Neural Network - 10 Units, Weight Decay=0.02



[Hastie et al., 2005, p. 39

# Still down of

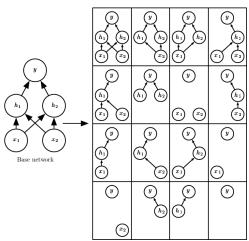
## Early Stopping



[source: Goodfellow et al. 2016, p. 239]

Early stopping works with any iterative learning algorithm.

## Dropout



Ensemble of subnetworks

## Summary (1/3)

- ► (Feedforward) Neural networks are supervised parametric models
  - arranged in several layers,
    - with the first layer being the inputs.
    - the last layer being the outputs,
    - ▶ intermediate/hidden layers representing subexpressions of the prediction function (not to be confused with latent variables!)
  - ► each layer composed of a linear combination of the previous one, with weights being parameters of the model,
  - and a nonlinear activation function.
    - usually the linear rectifier max(0, x)
    - or a sigmoid function (logistic, tanh)
- ► Neural networks are learnt through Stochastic Gradient Descent
  - computation of the gradients in reverse order of computations of predictions (backpropagation)
  - usually using minibatches for a few ten or hundred instances.

## Summary (2/3)

- ► As any other model, neural networks have to be regularized.
  - structural regularization:
    - number of nodes/layer and number of layers.
  - ▶ early stopping
  - ► L2 regularization (weight decay)
  - ► dropout: use a random sample of input and hidden nodes per example
- ▶ Neural networks can be extended in a rather straightforward way to work with sequential/time series, image data and any other kind of array data.
  - convolutional neural networks
  - recurrent neural networks (including LSTM, GRU)
  - these models belong to the most powerful models currently used in ML

## Summary (3/3)



- ► A neural network with a single hidden layer can already approximate any function arbitrarily well.
  - universal approximator
  - ▶ if one adds arbitrarily many hidden nodes in that layer as necessary
  - but deeper networks with more than one hidden layer have shown to generalize better
    - ► make better use of a given number of parameters
    - deep learning

# JaiNersitä,

## Further Readings

- ► See Murphy 2012, chapter 16.5 and Hastie et al. 2005, chapter 11.
- ▶ More detailed introduction in Goodfellow et al. 2016, chapter 6 and 7.

### References



- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The Mit Press, Cambridge, Massachusetts, November 2016. ISBN 978-0-262-03561-3.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining, Inference and Prediction, volume 27. Springer, 2005.
- Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In *International Conference on Machine Learning*, pages 448–456, 2015.
- Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-Normalizing Neural Networks. arXiv preprint arXiv:1706.02515, 2017.
- Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
- Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. *Journal of machine learning research*, 15(1):1929–1958, 2014.