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Machine Learning 1. Network Topologies

Logistic Regression

logistic regression:

A~

9(x) == p(y = 1] x) = logistic(8"x), xcRM

Note: logistic(x) := 1/(1+ e~ ).
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Machine Learning 1. Network Topologies

Logistic Regression (0 hidden layers)

Vs

logistic regression:

input layer

output layer

A~

9(x) :=p(y = 1] x) = logistic(8"x), xcRM

Note: logistic(x) := 1/(1+ e~ ).
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Machine Learning 1. Network Topologies

Feedforward Neural Network (1 hidden layer)

X1 X2 - XM input layer
2 % 2k hidden layer
\ y / output layer

feedforward neural network (1 hidden layer):

zk(x) :zlogistic(ﬁlT’kx), k=1,...,K,x e RM

9(x) :=logistic(3] z(x))
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Machine Learning 1. Network Topologies

Feedforward Neural Network (2 hidden layers)

X1 X2 e XM input layer
711212 " .- 71 K, 1st hidden layer
221 2 K, 2nd hidden layer

\ output layer

feedforward neural network (2 hidden layers):

71 k(x) ::Iogistic(ﬁl-r,kx), k=1,...,K, xeRM
23 k(x) ::Iogistic(ﬁzkzl(x)), k=1,...,Ko
9(x) =logistic(84 zo(x))
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Machine Learning 1. Network Topologies

Feedforward Neural Network (L hidden layers)

X1 _ Xo_ ..o _ XM input layer
21,1/21,2 \Zl,Kl 1st hidden layer
\2}\22,2 Z2,;é 2nd hidden layer
2, 1M& KL Lth hidden layer
y output layer
71 k(x) :=logistic B x), k=1,... K,xeRM

(
2y k(x) ::Iogistlc(ﬁg czi—1(x)), €=2,....LLk=1,...,K
(%) :zlogistlc(ﬂLH z1(x))
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Machine Learning 1. Network Topologies

. B2
Different Targets y q
Binary classification:

9(x) :=p(y = 1| x) = logistic(8/,121(x)), B € RFL
Regression:

9(x) =Bl 121(x), Bry1 € R

Regression with multiple outputs:

y(x) :==Pry1z1(x), Bri1 € RT*KL 3 matrix!

Multi-class classification:

y(x) :=p(y | x) = softmax(S14+12.(x)), Bri1 € RTXKL
Notes:
» L hidden layers

» at hidden nodes always are logistic/sigmoid functions
(activation function, transfer function).
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Machine Learning 1. Network Topologies

Softmax

softmax: R7T - RT

el
T u,
Zs:l ew t=1:T
_ e
ZST:1 els
el2

ZST:1 els

softmax(u) := , ueRT

e'T

Zstl els
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Machine Learning 1. Network Topologies

Softmax

binary classification:
9(x) = Bly = 11 x) = logistic(5,121(x))
= logistic(ui+1(x)),  urr1(x) == B/120(x), Bry1 € RFL
1
1+e v

logistic(u) :=

multi-class classification:
9() = Bly | ) = (Bly = t | x))emr.7 = softmax(Br12.(x))
= softmax(ug41(x)), wu+1(x) = Bry1zi(x), Bry1 € R’

el T
softmax(u) := [ ——— , ueR
Sag e
5= t=1:T
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Machine Learning 1. Network Topologies

Softmax / Generalization of the Logistic

binary classification:
§(x) = Bly = 1| x) = logistic(5], 12.(x))

= logistic(ur+1(x)), uL+1(x)0:: Bli1zi(x), B € R
e

- 1 e Otev 0
logistic(u) := TTe v 1ier— » = (softmax( J )2
elt+et /5

(o0 =1 ) =t )

multi-class classification:
9() = Bly | ) = (Bly = t | x))emr.7 = softmax(Br12.(x))
= softmax(ug41(x)), wu+1(x) = Bry1zi(x), Bry1 € R’

el T
softmax(u) := [ ——— , ueR
Sag e
5= t=1:T
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Machine Learning 1. Network Topologies

Softmax Properties

el

- , ueRT
YL et
s=1 t=1:T

softmax(u) :=

» softmax is a generalization of the logistic function from 2 to T classes.

» softmax is continuous and differentiable.

» softmax components sum to one:

T

Z(softmax(u))t =1

t=1

» softmax in the limit approaches the maximum indicator:

lim softmax(a- u) = (I(ur = Umax))t=1:T, Umax := max u(s)
a—00 sel: T
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Machine Learning 1. Network Topologies

NS
Feedforward Neural Network (L hidden layers, T output%ﬁ

X1 _ Xo_ ..o _ XM input layer
211212 .. 71 K, 1st hidden layer
2212227 ... 22K, 2nd hidden layer

g MZ

XX X
output layer

71 k(x) 3:5(ﬁ1T,kX)7 k=1,...,K;, xcRM
2y k(x) ::s(BZk z—1(x)), €=2,...,L, k=1,...,K
k(%) ::s(ﬂLTJrl’k zi(x)), k=1,...,T
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Machine Learning 1. Network Topologies

NS
Feedforward Neural Network (L hidden layers, T output%ﬁ

make it simple 1: each layer a vector

X

|

21

|

22

!

ZL

!

y
z1(x) :=s°(b1x)

zy(x) :=s°(Brze-1(x)), £=2,...

y(x) :=s*(Brrrz(x))

input layer
1st hidden layer

2nd hidden layer

Lth hidden layer

output layer
51 c RleM

L, By € RFexKe

/BL-i-l c RTXKL
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Machine Learning 1. Network Topologies

NS
Feedforward Neural Network (L hidden layers, T output%ﬁ

make it simple 2: rename x and ¥ to zg and z; 4

b4 input layer
zy 1st hidden layer

0] 2nd hidden layer

l

z] Lth hidden layer
Zl 41 output layer
zy(x) :=s"(Brze-1(x)), €=1,....L+1 By € R Kit

with zg:=x, J(x):=z;41(x), Ki:=M, Kp1:=T
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Machine Learning 1. Network Topologies

Activation Functions

Nowadays, usually the rectifier is used as activation function s
(such nodes are called ReLU: rectified linear unit):

rect(x) := max(0, x)

red: logistic, blue: tanh, green: rect
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Machine Learning 1. Network Topologies

B
Network Topologies “

» feedforward neural network (aka multilayer perceptron, MLP)
» often just a single hidden layer is used
» NN with single hidden layer is already a universal approximator

» skip arcs can be used to connect layers skipping a hidden layer

» usually layers are connected completely (fully connected layer),
but sometimes sparse connections are used.

» nodes & connections always form a DAG
» recurrent neural network

» neural networks with backward connections / not a DAG.

» used in language modeling

» no simple probabilistic interpretation

» nowadays usually rolled out to a feedforward net with tied weights
» Hopfield networks / associative memory:

» symmetric connections between hidden units
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2. Stochastic Gradient Descent (Backpropagation)
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Vector Calculus Refresh — Gradients & Jacobians

function with N inputs, single output:
f:RV R
x> f(x1,...,xN)

gradient (vector):

of
Vi) = ()
n n=1:N
function/map with N inputs, M outputs:
f: RN - R

X = (fm(le oo 7XN))m:1:M

Jacobian (matrix):
Ofm

D) = <8Xn(X)>m 1:M,n=1:N
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Vector Calculus Refresh — Chain Rule A

function composition:
X =RV L y.—rM & z._R
X — f(x)
y = g(y)
x = gof(x) =g(f(x))
chain rule:

V(g o f)(x) =Df(x)" (Ve)(f(x))
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Vector Calculus Refresh — Elementwise Function
Application

function with single input, single output:

f:R—R
x — f(x)
elementwise function application:
fo:RV RN ?Ef;
2
X = (f(xn))nzl:N - .
its Jacobian: '
f/(Xl) f(XN)
f'(x
DF*(x) = be) = diag("(x))
f'(xn)
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

M
Vector Calculus Refresh — Partial Gradients & Jacobianﬂ

function with N inputs, single output:
f:RV SR
x = f(xy,...,xn)
partial gradient (vector):
Vif(x):= <§;(x)>nel, IC{1,...,N}
function/map with N inputs, M outputs:
f: RV — R
X = (fn(x1, oy XN)) m=1:M
partial Jacobian (matrix):

Df(x) = (gfm

(x)> IC{l,...,N}
m=1:M,nel

Xn
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

NN
Objective Function “

feedforward neural network, L hidden layers with Ki, ..., K; nodes each:

zo(x) :=s°(Brze-1(x)), £=1,...,L+1, p[re RKexKe—1

with zg:=x, §(x):i=z141(x), Ki:=M, Ki1:=T

)

objective function-

N
A
f( : NZEYna Xn))"i_*“ﬂ"zfﬁz ana)/n EHﬁHz
n=1 n=1
loss for single sample:

E(/B! X7y) ::E(y7 ZL+1(X))
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

. . N
Objective Function “
feedforward neural network, L hidden layers with K1, ..., K; nodes each:

u(x) = Brze_1(x), €=1,...,L+1, [ e RKxKe
zy(x) := s°(ue(x))

with zg:=x, §(x):=z41(x), Ki:=M, Kp1:=T

loss for single sample:
L(B:x,y) =L(y, zL+1(x))
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

NN
Objective Function “

feedforward neural network, L hidden layers with K1, ..., K; nodes each:

u(ze—1) = Beze—1, L=1,...,L+1, B eRFxK
zg(ug) == s°(uy)

with zg:=x, §(x):=(zp410ur10z 0u10--0z10u1)(Xx), Ki:=M, Ki41:=T
loss for single sample:

L(Bix,y) :=L(y,z141(x)) = (Lyozip10up10---Zougo---z10ur)(x)
with pair loss £y (z;+1) := loss(y, z;11)
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

NN
Objective Function “

feedforward neural network, L hidden layers with Ki, ..., K; nodes each:

uf(zf—l) = /szf—lv l= 17"‘7L+17 B@ GRK[XKZ71
zo(up) == s°(uyp)

with zg:=x, §(x):=(z y10ui410z,0u10-0z10u1)(x), Ki:=M, Ki11:=T

loss for single sample:
L(B;x,y) =L(y,z141(x)) = (Ly 0 zip10uUupp10-- -z 0upo---z1 0ur)(x)

with pair loss £, (z;+1) := loss(y, z;11)

its gradients:
Vi, L(B) = Da,  ue(ze-1) "V (Ly 0 2410 U110+ Zp41 0 Upry © 20)(ug)
V(Lyozit10up41 0241 0 Upys © 2)(up)

T T
= Dz, Duy V(Ly0zi10up4102Zp42 0 Upy2 0 2p41)(Upt1)
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Gradients / Recursion Scheme

single sample loss gradients:

Vi, L(B) = Da,  ue(ze-1) V(Ly 0 2410 up11 0+ Zp41 0 Upry © 20)(ug)

V(Ly O0Z 410U 410+ "-2Zy410Upy1 © Ze)(uf)

T T
= sz DU@+1V(£}/ 0Z 110U 410"+2Zp120 Upy20 Zg+1)(ue+1)

establishes a recursive computation scheme:
Vﬁe,kﬁ(/@) = Dﬁz,k uf(zf—l)TgZ(uf)
ge(ue) == DZETDUeTH ge+1(ues1)

gr+1(urt1) :== DZLT+1V£y(ZL+1)
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

B
Gradients / Components i

u(z—1) == Brz—y, €=1,...,L+1, B, e RKxKi—
zo(up) := s°(wyp)
single sample loss gradients:
Vo, L(B) = Dg,, ue(ze-1) " ge(ue)
go(ug) == DZZTDUeTH ge+1(ues1)

gr+1(urt1) :== DZLT.HVﬁy(ZL-H)

components:
Duy = B¢
Dz, = diag(s'O(Ug))
Dg, e = ez ~ Vg, L(B) =z_1e] gi(up)

vﬂz[’(ﬁ) = gﬁ(uﬂ) Zg-,;]_

Note: e, denotes the k-th unit vector: (ef); := I(k = j).
B is a parameter matrix, thus Vg, £(3) is a matrix-shaped gradient!
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Gradients / Sticking Everything Together

parameters:

Bpe RKexKer  p—1.1+1
feed forward:

20 = X
up:=Bpzp_1, £=1:L+1
zp = 5°(uy)

back propagation:
gr+1(urt1) = diag(s(ur+1)) VL (21+1)
V5, L(B) = gi(ur)z/ 1, £=L+1:1 backwards
B = Be — (Vs L(B) + ABr)
ge(ur) := diag(s"(ue)) 81 ge1(ues)
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Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

s
SGD / Backpropagation “

1 learn-nn-sgd(D"" := {(x1, 1), ., (v, yn) 15 L, K, 5, VL A 0, 1)
> randomly initialize S, € RKexKe—r p—1:1 41
3 for i:=1,...,I

4 for (xn, yn) € D" in random order:
5 20 := Xp [feed forward]
6 for £:=1:L+1:
7 ug = Beze—1
8 zp = s°(up)
9 gi+1 = diag(s"°(ur4+1))VLy, (z141) [back propagation]
10 for ¢ := L+ 1:2 backwards:
11 8r—1 = diag(s’o(Ug_l)) ﬁlT 8 where
. > u r I
: 8= B = gzl + 20) > Ly of e
5 o= B- ez + AR > e e
14 if COnVerged(. . ) : A regularization weight
15 return f3 > [ mumber o eraions

16  raise exception "not converged in [ iterations”

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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3. Regularization
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Machine Learning 3. Regularization

Regularization of Neural Networks

» generic, working with any model:
» L2 regularization
» aka weight decay
» most frequently used method

» L1 regularization

» number of iterations as hyperparameter (early stopping)

» specific for neural networks:
» structural regularization:
» sufficiently small number of layers and sizes of layers

» compare number of parameters with sample size!

» dropout [Srivastava et al., 2014]
» use random sample of input nodes and hidden nodes for each instance
during training
» Batch normalization [loffe and Szegedy, 2015]
» standardize the values z  for each layer (for a minibatch).

» self-normalizing neural networks [Klambauer et al., 2017]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization
.. N
L2 regularization / Example A

Neural Network - 10 Units, Weight Decay=0.02

Neural Network - 10 Units, No Weight Decay
/ ; §
90 20 { i i
00 @ % o} H i
08050 { i ;
0:0g% o g0 N : ! i
o o0, 4 |
o 3 4
i
g \ |
| 23
\ o Q}
\
o}
o} % @ g0 H
0.00% 0
i O@ Training Error: 0.160 e
Training Error: 0.100 o e} a
] Test Error: 0.223
TestError:  0.259 Bayes Eror: 0.210 o
Bayes Error:  0.210 (¢} i M

[Hastie et al., 2005, p. 3¢
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Machine Learning 3. Regularization

Early Stopping

0.20 T T T T
*—e Training set loss

0.15 —— Validation set loss [

Loss (negative log-likelihood)

0.10 .
0.05 -
0.00 k -

0 50 100 150 200 250

Time (epochs)

[source: Goodfellow et al. 2016, p. 239]

Early stopping works with any iterative learning algorithm.
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Machine Learning 3. Regularization

Dropout

©)
Olga™®
® 9\}9

@
@
@eee

qi&»+
ofo

Base network

N
S9& o
®

® °°9°¥°%

Ensemble of subnetworks

[source: Goodfellow et al. 2016, p. 252]
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Machine Learning 3. Regularization

Summary (1/3) YA

» (Feedforward) Neural networks are supervised parametric models
» arranged in several layers,
» with the first layer being the inputs,
> the last layer being the outputs,

> intermediate/hidden layers representing subexpressions of the
prediction function

(not to be confused with latent variables!)

» each layer composed of a linear combination of the previous one,
with weights being parameters of the model,

» and a nonlinear activation function,
» usually the linear rectifier max(0, x)
» or a sigmoid function (logistic, tanh)

» Neural networks are learnt through Stochastic Gradient Descent
» computation of the gradients in reverse order of computations of
predictions (backpropagation)
» usually using minibatches for a few ten or hundred instances.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization

Summary (2/3) YA

» As any other model, neural networks have to be regularized.
» structural regularization:

» number of nodes/layer and number of layers.
» early stopping
» L2 regularization (weight decay)
» dropout: use a random sample of input and hidden nodes per example
» Neural networks can be extended in a rather straightforward way to

work with sequential /time series, image data and any other kind of
array data.

» convolutional neural networks
» recurrent neural networks (including LSTM, GRU)

» these models belong to the most powerful models currently used in ML

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Regularization

Summary (3/3) YA

» A neural network with a single hidden layer can already approximate
any function arbitrarily well.

» universal approximator
» if one adds arbitrarily many hidden nodes in that layer as necessary

» but deeper networks with more than one hidden layer have shown to
generalize better
> make better use of a given number of parameters

» deep learning

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning

B
Further Readings “

» See Murphy 2012, chapter 16.5 and Hastie et al. 2005, chapter 11.

» More detailed introduction in Goodfellow et al. 2016, chapter 6 and 7.
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