Machine Learning

Machine Learning

B. Supervised Learning: Nonlinear Models
B.2. Neural Networks

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning

Syllabus

Fri.

Fri.
Fri.
Fri.
Fri.

Fri.
Fri.
Fri.
Fri.

Fri.

Fri.
Fri.
Fri.
Fri.

26.10.

2.11.
9.11.
16.11.
23.11.

30.11.

7.12.
14.12.
21.12.

11.1.

18.1.
25.1.
1.2
8.2.

0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
A.1 Linear Regression

A.2 Linear Classification

A.3 Regularization

A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models

B.1 Nearest-Neighbor Models

B.2 Neural Networks

B.3 Decision Trees

B.4 Support Vector Machines

— Christmas Break —

B.5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning
C.1 Clustering

C.2 Dimensionality Reduction
C.3 Frequent Pattern Mining
Q&A

Machine Learning

Outline

1. Network Topologies

2. Stochastic Gradient Descent (Backpropagation)

3. Regularization

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

. NN
Outline v

1. Network Topologies

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1/27

Machine Learning 1. Network Topologies

Logistic Regression

logistic regression:

A~

9(x) == p(y = 1] x) = logistic(8"x), xcRM

Note: logistic(x) := 1/(1+ e~).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

/ 27

Machine Learning 1. Network Topologies

Logistic Regression (0 hidden layers)

Vs

logistic regression:

input layer

output layer

A~

9(x) :=p(y = 1] x) = logistic(8"x), xcRM

Note: logistic(x) := 1/(1+ e~).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27

Machine Learning 1. Network Topologies

Feedforward Neural Network (1 hidden layer)

X1 X2 - XM input layer
2 % 2k hidden layer
\ y / output layer

feedforward neural network (1 hidden layer):

zk(x) :zlogistic(ﬁlT’kx), k=1,...,K,x e RM

9(x) :=logistic(3] z(x))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

Feedforward Neural Network (2 hidden layers)

X1 X2 e XM input layer
711212 " .- 71 K, 1st hidden layer
221 2 K, 2nd hidden layer

\ output layer

feedforward neural network (2 hidden layers):

71 k(x) ::Iogistic(ﬁl-r,kx), k=1,...,K, xeRM
23 k(x) ::Iogistic(ﬁzkzl(x)), k=1,...,Ko
9(x) =logistic(84 zo(x))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

Feedforward Neural Network (L hidden layers)

X1 _ Xo_ ..o _ XM input layer
21,1/21,2 \Zl,Kl 1st hidden layer
\2}\22,2 Z2,;é 2nd hidden layer
2, 1M& KL Lth hidden layer
y output layer
71 k(x) :=logistic B x), k=1,... K,xeRM

(
2y k(x) ::Iogistlc(ﬁg czi—1(x)), €=2,....LLk=1,...,K
(%) :zlogistlc(ﬂLH z1(x))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

. B2
Different Targets y q
Binary classification:

9(x) :=p(y = 1| x) = logistic(8/,121(x)), B € RFL
Regression:

9(x) =Bl 121(x), Bry1 € R

Regression with multiple outputs:

y(x) :==Pry1z1(x), Bri1 € RT*KL 3 matrix!

Multi-class classification:

y(x) :=p(y | x) = softmax(S14+12.(x)), Bri1 € RTXKL
Notes:
» L hidden layers

» at hidden nodes always are logistic/sigmoid functions
(activation function, transfer function).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

Softmax

softmax: R7T - RT

el
T u,
Zs:l ew t=1:T
_ e
ZST:1 els
el2

ZST:1 els

softmax(u) := , ueRT

e'T

Zstl els

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

/ 27

Machine Learning 1. Network Topologies

Softmax

binary classification:
9(x) = Bly = 11 x) = logistic(5,121(x))
= logistic(ui+1(x)), urr1(x) == B/120(x), Bry1 € RFL
1
1+e v

logistic(u) :=

multi-class classification:
9() = Bly |) = (Bly = t | x))emr.7 = softmax(Br12.(x))
= softmax(ug41(x)), wu+1(x) = Bry1zi(x), Bry1 € R’

el T
softmax(u) := [——— , ueR
Sag e
5= t=1:T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

Softmax / Generalization of the Logistic

binary classification:
§(x) = Bly = 1| x) = logistic(5], 12.(x))

= logistic(ur+1(x)), uL+1(x)0:: Bli1zi(x), B € R
e

- 1 e Otev 0
logistic(u) := TTe v 1ier— » = (softmax(J)2
elt+et /5

(o0 =1) =t)

multi-class classification:
9() = Bly |) = (Bly = t | x))emr.7 = softmax(Br12.(x))
= softmax(ug41(x)), wu+1(x) = Bry1zi(x), Bry1 € R’

el T
softmax(u) := [——— , ueR
Sag e
5= t=1:T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

Softmax Properties

el

- , ueRT
YL et
s=1 t=1:T

softmax(u) :=

» softmax is a generalization of the logistic function from 2 to T classes.

» softmax is continuous and differentiable.

» softmax components sum to one:

T

Z(softmax(u))t =1

t=1

» softmax in the limit approaches the maximum indicator:

lim softmax(a- u) = (I(ur = Umax))t=1:T, Umax := max u(s)
a—00 sel: T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

NS
Feedforward Neural Network (L hidden layers, T output%ﬁ

X1 _ Xo_ ..o _ XM input layer
211212 .. 71 K, 1st hidden layer
2212227 ... 22K, 2nd hidden layer

g MZ

XX X
output layer

71 k(x) 3:5(ﬁ1T,kX)7 k=1,...,K;, xcRM
2y k(x) ::s(BZk z—1(x)), €=2,...,L, k=1,...,K
k(%) ::s(ﬂLTJrl’k zi(x)), k=1,...,T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

LKL Lth hidden layer

Machine Learning 1. Network Topologies

NS
Feedforward Neural Network (L hidden layers, T output%ﬁ

make it simple 1: each layer a vector

X

|

21

|

22

!

ZL

!

y
z1(x) :=s°(b1x)

zy(x) :=s°(Brze-1(x)), £=2,...

y(x) :=s*(Brrrz(x))

input layer
1st hidden layer

2nd hidden layer

Lth hidden layer

output layer
51 c RleM

L, By € RFexKe

/BL-i-l c RTXKL

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

NS
Feedforward Neural Network (L hidden layers, T output%ﬁ

make it simple 2: rename x and ¥ to zg and z; 4

b4 input layer
zy 1st hidden layer

0] 2nd hidden layer

l

z] Lth hidden layer
Zl 41 output layer
zy(x) :=s"(Brze-1(x)), €=1,....L+1 By € R Kit

with zg:=x, J(x):=z;41(x), Ki:=M, Kp1:=T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 1. Network Topologies

Activation Functions

Nowadays, usually the rectifier is used as activation function s
(such nodes are called ReLU: rectified linear unit):

rect(x) := max(0, x)

red: logistic, blue: tanh, green: rect

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27

Machine Learning 1. Network Topologies

B
Network Topologies “

» feedforward neural network (aka multilayer perceptron, MLP)
» often just a single hidden layer is used
» NN with single hidden layer is already a universal approximator

» skip arcs can be used to connect layers skipping a hidden layer

» usually layers are connected completely (fully connected layer),
but sometimes sparse connections are used.

» nodes & connections always form a DAG
» recurrent neural network

» neural networks with backward connections / not a DAG.

» used in language modeling

» no simple probabilistic interpretation

» nowadays usually rolled out to a feedforward net with tied weights
» Hopfield networks / associative memory:

» symmetric connections between hidden units

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

. NN
Outline v

2. Stochastic Gradient Descent (Backpropagation)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
12 / 27

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Vector Calculus Refresh — Gradients & Jacobians

function with N inputs, single output:
f:RV R
x> f(x1,...,xN)

gradient (vector):

of
Vi) = ()
n n=1:N
function/map with N inputs, M outputs:
f: RN - R

X = (fm(le oo 7XN))m:1:M

Jacobian (matrix):
Ofm

D) = <8Xn(X)>m 1:M,n=1:N

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Vector Calculus Refresh — Chain Rule A

function composition:
X =RV L y.—rM & z._R
X — f(x)
y = g(y)
x = gof(x) =g(f(x))
chain rule:

V(g o f)(x) =Df(x)" (Ve)(f(x))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 /27

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Vector Calculus Refresh — Elementwise Function
Application

function with single input, single output:

f:R—R
x — f(x)
elementwise function application:
fo:RV RN ?Ef;
2
X = (f(xn))nzl:N - .
its Jacobian: '
f/(Xl) f(XN)
f'(x
DF*(x) = be) = diag("(x))
f'(xn)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

M
Vector Calculus Refresh — Partial Gradients & Jacobianﬂ

function with N inputs, single output:
f:RV SR
x = f(xy,...,xn)
partial gradient (vector):
Vif(x):= <§;(x)>nel, IC{1,...,N}
function/map with N inputs, M outputs:
f: RV — R
X = (fn(x1, oy XN)) m=1:M
partial Jacobian (matrix):

Df(x) = (gfm

(x)> IC{l,...,N}
m=1:M,nel

Xn

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

NN
Objective Function “

feedforward neural network, L hidden layers with Ki, ..., K; nodes each:

zo(x) :=s°(Brze-1(x)), £=1,...,L+1, p[re RKexKe—1

with zg:=x, §(x):i=z141(x), Ki:=M, Ki1:=T

)

objective function-

N
A
f(: NZEYna Xn))"i_*“ﬂ"zfﬁz ana)/n EHﬁHz
n=1 n=1
loss for single sample:

E(/B! X7y) ::E(y7 ZL+1(X))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

. . N
Objective Function “
feedforward neural network, L hidden layers with K1, ..., K; nodes each:

u(x) = Brze_1(x), €=1,...,L+1, [e RKxKe
zy(x) := s°(ue(x))

with zg:=x, §(x):=z41(x), Ki:=M, Kp1:=T

loss for single sample:
L(B:x,y) =L(y, zL+1(x))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

NN
Objective Function “

feedforward neural network, L hidden layers with K1, ..., K; nodes each:

u(ze—1) = Beze—1, L=1,...,L+1, B eRFxK
zg(ug) == s°(uy)

with zg:=x, §(x):=(zp410ur10z 0u10--0z10u1)(Xx), Ki:=M, Ki41:=T
loss for single sample:

L(Bix,y) :=L(y,z141(x)) = (Lyozip10up10---Zougo---z10ur)(x)
with pair loss £y (z;+1) := loss(y, z;11)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

NN
Objective Function “

feedforward neural network, L hidden layers with Ki, ..., K; nodes each:

uf(zf—l) = /szf—lv l= 17"‘7L+17 B@ GRK[XKZ71
zo(up) == s°(uyp)

with zg:=x, §(x):=(z y10ui410z,0u10-0z10u1)(x), Ki:=M, Ki11:=T

loss for single sample:
L(B;x,y) =L(y,z141(x)) = (Ly 0 zip10uUupp10-- -z 0upo---z1 0ur)(x)

with pair loss £, (z;+1) := loss(y, z;11)

its gradients:
Vi, L(B) = Da, ue(ze-1) "V (Ly 0 2410 U110+ Zp41 0 Upry © 20)(ug)
V(Lyozit10up41 0241 0 Upys © 2)(up)

T T
= Dz, Duy V(Ly0zi10up4102Zp42 0 Upy2 0 2p41)(Upt1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Gradients / Recursion Scheme

single sample loss gradients:

Vi, L(B) = Da, ue(ze-1) V(Ly 0 2410 up11 0+ Zp41 0 Upry © 20)(ug)

V(Ly O0Z 410U 410+ "-2Zy410Upy1 © Ze)(uf)

T T
= sz DU@+1V(£}/ 0Z 110U 410"+2Zp120 Upy20 Zg+1)(ue+1)

establishes a recursive computation scheme:
Vﬁe,kﬁ(/@) = Dﬁz,k uf(zf—l)TgZ(uf)
ge(ue) == DZETDUeTH ge+1(ues1)

gr+1(urt1) :== DZLT+1V£y(ZL+1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

B
Gradients / Components i

u(z—1) == Brz—y, €=1,...,L+1, B, e RKxKi—
zo(up) := s°(wyp)
single sample loss gradients:
Vo, L(B) = Dg,, ue(ze-1) " ge(ue)
go(ug) == DZZTDUeTH ge+1(ues1)

gr+1(urt1) :== DZLT.HVﬁy(ZL-H)

components:
Duy = B¢
Dz, = diag(s'O(Ug))
Dg, e = ez ~ Vg, L(B) =z_1e] gi(up)

vﬂz[’(ﬁ) = gﬁ(uﬂ) Zg-,;]_

Note: e, denotes the k-th unit vector: (ef); := I(k = j).
B is a parameter matrix, thus Vg, £(3) is a matrix-shaped gradient!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

Gradients / Sticking Everything Together

parameters:

Bpe RKexKer p—1.1+1
feed forward:

20 = X
up:=Bpzp_1, £=1:L+1
zp = 5°(uy)

back propagation:
gr+1(urt1) = diag(s(ur+1)) VL (21+1)
V5, L(B) = gi(ur)z/ 1, £=L+1:1 backwards
B = Be — (Vs L(B) + ABr)
ge(ur) := diag(s"(ue)) 81 ge1(ues)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Machine Learning 2. Stochastic Gradient Descent (Backpropagation)

s
SGD / Backpropagation “

1 learn-nn-sgd(D"" := {(x1, 1), ., (v, yn) 15 L, K, 5, VL A 0, 1)
> randomly initialize S, € RKexKe—r p—1:1 41
3 for i:=1,...,I

4 for (xn, yn) € D" in random order:
5 20 := Xp [feed forward]
6 for £:=1:L+1:
7 ug = Beze—1
8 zp = s°(up)
9 gi+1 = diag(s"°(ur4+1))VLy, (z141) [back propagation]
10 for ¢ := L+ 1:2 backwards:
11 8r—1 = diag(s’o(Ug_l)) ﬁlT 8 where
. > u r I
: 8= B = gzl + 20) > Ly of e
5 o= B- ez + AR > e e
14 if COnVerged(. .) : A regularization weight
15 return f3 > [mumber o eraions

16 raise exception "not converged in [iterations”

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
20

Machine Learning 3. Regularization

. NN
Outline v

3. Regularization

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
21 /27

Machine Learning 3. Regularization

Regularization of Neural Networks

» generic, working with any model:
» L2 regularization
» aka weight decay
» most frequently used method

» L1 regularization

» number of iterations as hyperparameter (early stopping)

» specific for neural networks:
» structural regularization:
» sufficiently small number of layers and sizes of layers

» compare number of parameters with sample size!

» dropout [Srivastava et al., 2014]
» use random sample of input nodes and hidden nodes for each instance
during training
» Batch normalization [loffe and Szegedy, 2015]
» standardize the values z for each layer (for a minibatch).

» self-normalizing neural networks [Klambauer et al., 2017]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
21 /27

Machine Learning 3. Regularization
.. N
L2 regularization / Example A

Neural Network - 10 Units, Weight Decay=0.02

Neural Network - 10 Units, No Weight Decay
/ ; §
90 20 { i i
00 @ % o} H i
08050 { i ;
0:0g% o g0 N : ! i
o o0, 4 |
o 3 4
i
g \ |
| 23
\ o Q}
\
o}
o} % @ g0 H
0.00% 0
i O@ Training Error: 0.160 e
Training Error: 0.100 o e} a
] Test Error: 0.223
TestError: 0.259 Bayes Eror: 0.210 o
Bayes Error: 0.210 (¢} i M

[Hastie et al., 2005, p. 3¢

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
22 /27

Machine Learning 3. Regularization

Early Stopping

0.20 T T T T
*—e Training set loss

0.15 —— Validation set loss [

Loss (negative log-likelihood)

0.10 .
0.05 -
0.00 k -

0 50 100 150 200 250

Time (epochs)

[source: Goodfellow et al. 2016, p. 239]

Early stopping works with any iterative learning algorithm.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 /27

Machine Learning 3. Regularization

Dropout

©)
Olga™®
® 9\}9

@
@
@eee

qi&»+
ofo

Base network

N
S9& o
®

® °°9°¥°%

Ensemble of subnetworks

[source: Goodfellow et al. 2016, p. 252]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
24 /27

Machine Learning 3. Regularization

Summary (1/3) YA

» (Feedforward) Neural networks are supervised parametric models
» arranged in several layers,
» with the first layer being the inputs,
> the last layer being the outputs,

> intermediate/hidden layers representing subexpressions of the
prediction function

(not to be confused with latent variables!)

» each layer composed of a linear combination of the previous one,
with weights being parameters of the model,

» and a nonlinear activation function,
» usually the linear rectifier max(0, x)
» or a sigmoid function (logistic, tanh)

» Neural networks are learnt through Stochastic Gradient Descent
» computation of the gradients in reverse order of computations of
predictions (backpropagation)
» usually using minibatches for a few ten or hundred instances.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25

Machine Learning 3. Regularization

Summary (2/3) YA

» As any other model, neural networks have to be regularized.
» structural regularization:

» number of nodes/layer and number of layers.
» early stopping
» L2 regularization (weight decay)
» dropout: use a random sample of input and hidden nodes per example
» Neural networks can be extended in a rather straightforward way to

work with sequential /time series, image data and any other kind of
array data.

» convolutional neural networks
» recurrent neural networks (including LSTM, GRU)

» these models belong to the most powerful models currently used in ML

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
26

Machine Learning 3. Regularization

Summary (3/3) YA

» A neural network with a single hidden layer can already approximate
any function arbitrarily well.

» universal approximator
» if one adds arbitrarily many hidden nodes in that layer as necessary

» but deeper networks with more than one hidden layer have shown to
generalize better
> make better use of a given number of parameters

» deep learning

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
27 /27

Machine Learning

B
Further Readings “

» See Murphy 2012, chapter 16.5 and Hastie et al. 2005, chapter 11.

» More detailed introduction in Goodfellow et al. 2016, chapter 6 and 7.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
28 /27

Machine Learning
N
References v

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The Mit Press, Cambridge, Massachusetts, November
2016. ISBN 978-0-262-03561-3.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining,
Inference and Prediction, volume 27. Springer, 2005.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
In International Conference on Machine Learning, pages 448-456, 2015.

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-Normalizing Neural Networks. arXiv preprint
arXiv:1706.02515, 2017.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. Journal of machine learning research, 15(1):1929-1958, 2014.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 /27

	1. Network Topologies
	2. Stochastic Gradient Descent (Backpropagation)
	3. Regularization
	Appendix

