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Machine Learning

Syllabus
Fri. 26.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 2.11. (2) A.1 Linear Regression
Fri. 9.11. (3) A.2 Linear Classification
Fri. 16.11. (4) A.3 Regularization
Fri. 23.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 30.11. (6) B.1 Nearest-Neighbor Models
Fri. 7.12. (7) B.2 Neural Networks
Fri. 14.12. (8) B.3 Decision Trees
Fri. 21.12. (9) B.4 Support Vector Machines

— Christmas Break —
Fri. 11.1. (10) B.5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning
Fri. 18.1. (11) C.1 Clustering
Fri. 25.1. (12) C.2 Dimensionality Reduction
Fri. 1.2. (13) C.3 Frequent Pattern Mining
Fri. 8.2. (14) Q&A
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Outline
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Machine Learning 1. Separating Hyperplanes

Separating Hyperplanes

Logistic Regression & Linear Discriminant Analysis (LDA):
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Machine Learning 1. Separating Hyperplanes

Separating Hyperplanes

Logistic Regression & Linear Discriminant Analysis (LDA):

linear decision boundary = separating hyperplane
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Machine Learning 1. Separating Hyperplanes

Hyperplanes

Hyperplanes can be modeled explicitly as

Hβ,β0 := {x | 〈β, x〉 = −β0}, β =


β1
β2
...
βM

 ∈ RM , β0 ∈ R

We will write Hβ shortly for Hβ,β0 (although β0 is very relevant!).

For any two points x , x ′ ∈ Hβ we have

〈β, x − x ′〉 = 〈β, x〉 − 〈β, x ′〉 = −β0 + β0 = 0

thus β is orthogonal to all translation vectors in Hβ,
and thus β/||β|| is the normal vector of Hβ.
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Machine Learning 1. Separating Hyperplanes

Hyperplanes
The projection of a point x ∈ RM onto Hβ , i.e., the closest point on Hβ to x is
given by

πHβ
(x) := x − 〈β, x〉+ β0

〈β, β〉 β

Proof:
(i) πx := πHβ

(x) ∈ Hβ :

〈β, πHβ
(x)〉 =〈β, x − 〈β, x〉+ β0

〈β, β〉 β〉

=〈β, x〉 − 〈β, x〉+ β0
〈β, β〉 〈β, β〉 = −β0

(ii) πHβ
(x) is the closest such point to x :

For any other point x ′ ∈ Hβ :

||x − x ′||2 =〈x − x ′, x − x ′〉 = 〈x − πx + πx − x ′, x − πx + πx − x ′〉
=〈x − πx , x − πx〉+ 2〈x − πx , πx − x ′〉+ 〈πx − x ′, πx − x ′〉
=||x − πx ||2 + 0 + ||πx − x ′||2

as x − πx is proportional to β and πx and x ′ are on Hβ .Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 1. Separating Hyperplanes

Hyperplanes
The signed distance of a point x ∈ RM to Hβ is given by

〈β, x〉+ β0
||β||

Proof:

x − πx =
〈β, x〉 − β0
〈β, β〉 β

Therefore

||x − πx ||2 =〈 〈β, x〉+ β0
〈β, β〉 β,

〈β, x〉+ β0
〈β, β〉 β〉

=(
〈β, x〉+ β0
〈β, β〉 )2〈β, β〉

||x − πx || =| 〈β, x〉+ β0
||β|| |
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Machine Learning 1. Separating Hyperplanes

Separating Hyperplanes

For given data
(x1, y1), (x2, y2), . . . , (xN , yN)

with a binary class label Y ∈ {−1,+1}
a hyperplane Hβ is called separating if

h(xn) > 0, if yn = +1, n = 1, . . . ,N

h(xn) < 0, if yn = −1

or briefer, but equivalently:

ynh(xn) > 0, n = 1, . . . ,N, with h(x) := 〈β, x〉+ β0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 1. Separating Hyperplanes

Linear Separable Data

I A data set is called linear separable if
there exists such a separating hyperplane.

I In general, if there is one, there are many.

I If there is a choice, we need a criterion
to narrow down which one we want / is the best.
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Machine Learning 2. Perceptron
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Machine Learning 2. Perceptron

Perceptron as Linear Model

Perceptron is another name for a linear binary classification model
(Rosenblatt 1958):

Y (X ) = sign h(X ), with sign x :=

 +1, x > 0
0, x = 0
−1, x < 0

h(X ) =β0 + 〈β,X 〉+ ε

that is very similar to the logistic regression model

Y (X ) = arg max
y

p(Y = y |X ) = sign p(Y = y |X )− 0.5

p(Y = +1 |X ) =logistic(〈β,X 〉)
p(Y = −1 |X ) =1− p(Y = +1 |X )

as well as to linear discriminant analysis (LDA).
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Machine Learning 2. Perceptron

Perceptron as Linear Model

I The perceptron does just provide class labels ŷ(x) and unscaled
certainty factors ĥ(x), but no class probabilities p̂(Y |X ).

I Therefore, probabilistic fit/error criteria such as maximum likelihood
cannot be applied.

I For perceptrons, the

sum of the certainty factors of misclassified points

is used as error criterion:

q(β, β0) :=
N∑

n=1:ŷn 6=yn

|hβ(xn)| = −
N∑

n=1:ŷn 6=yn

ynhβ(xn)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Perceptron

Perceptron as Linear Model

I use gradient descent to learn the model:

∂q(β, β0)

∂β
=−

N∑
n=1:ŷn 6=yn

ynxn

∂q(β, β0)

∂β0
=−

N∑
n=1:ŷn 6=yn

yn

I Instead of looking at all points at the same time,
stochastic gradient descent is applied
where all points are looked at sequentially (in random order).

I The update for a single point (xn, yn) then is

β̂(k+1) :=β̂(k) + µynxn

β̂
(k+1)
0 :=β̂

(k)
0 + µyn

with a step length µ (often called learning rate).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Perceptron

Perceptron Learning Algorithm

1 learn-perceptron(training data Dtrain, step length µ):

2 β̂ := a random vector

3 β̂0 := a random value
4 errors := 1
5 while errors > 0:
6 errors := 0

7 for (x , y) ∈ Dtrain (in random order):

8 if y(β̂0 + 〈β̂, x〉) ≤ 0:
9 errors := errors + 1

10 β̂ := β̂ + µyx

11 β̂0 := β̂0 + µy

12 return (β̂, β̂0)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 2. Perceptron

Perceptron Learning Algorithm: Properties

For linear separable data the perceptron learning algorithm can be shown
to converge: it finds a separating hyperplane in a finite number of steps.

But there are many problems with this simple algorithm:

I If there are several separating hyperplanes,
there is no control about which one is found
(it depends on the starting values).

I If the gap between the classes is narrow,
it may take many steps until convergence.

I If the data are not separable,
the learning algorithm does not converge at all.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Maximum Margin Separating Hyperplanes
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Maximum Margin Separating Hyperplanes

Many of the problems of perceptrons can be overcome by designing a
better fit/error criterion.

Maximum Margin Separating Hyperplanes use the width of the margin,
i.e., the distance of the closest points to the hyperplane as criterion:

maximize C

w.r.t. yn
β0 + 〈β, xn〉
||β|| ≥C , n = 1, . . . ,N

β ∈RM

β0 ∈R

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Maximum Margin Separating Hyperplanes
As for any solutions β, β0 also all positive scalar multiples fullfil the
equations, we can arbitrarily set

||β|| =
1

C

Then the problem can be reformulated as

minimize
1

2
||β||2

w.r.t. yn(β0 + 〈β, xn〉) ≥1, n = 1, . . . ,N

β ∈RM

β0 ∈R

This problem is a convex optimization problem
(quadratic target function with linear inequality constraints).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Quadratic Optimization

I To get rid of the linear inequality constraints,
one usually applies Lagrange multipliers.

I The Lagrange (primal) function of this problem is

L :=
1

2
||β||2 −

N∑
n=1

αn(yn(β0 + 〈β, xn〉)− 1)

w.r.t. αn ≥0

I For an extremum it is required that

∂L

∂β
=β −

N∑
n=1

αnynxn
!

= 0  β =
N∑

n=1

αnynxn

and

∂L

∂β0
=−

N∑
n=1

αnyn
!

= 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Quadratic Optimization
Input

β =
N∑

n=1

αnynxn,
N∑

n=1

αnyn = 0

into

L :=
1

2
||β||2 −

N∑
n=1

αn(yn(β0 + 〈β, xn〉)− 1)

yields the dual problem

L =
1

2
〈

N∑
n=1

αnynxn,
N∑

m=1

αmymxm〉 −
N∑

n=1

αn(yn(β0 + 〈
N∑

m=1

αmymxm, xn〉)− 1)

=
1

2

N∑
n=1

N∑
m=1

αnαmynym〈xn, xm〉+
N∑

n=1

αn −
N∑

n=1

αnynβ0 −
N∑

n=1

N∑
m=1

αnαmynym〈xn, xm〉

=− 1

2

N∑
n=1

N∑
m=1

αnαmynym〈xn, xm〉+
N∑

n=1

αn

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Maximum Margin Separating Hyperplanes

Quadratic Optimization

The dual problem is

maximize L(α) =− 1

2

N∑
n=1

N∑
m=1

αnαmynym〈xn, xm〉+
N∑

n=1

αn

w.r.t.
N∑

n=1

αnyn =0

αn ≥0

with much simpler constraints.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Learning SVMs
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Machine Learning 4. Learning SVMs

Minimize a Quadratic Function with Linear Equality and
Inequality Constraints

minimize f (x) := xTCx − cT x

w.r.t. Ax − a = 0

Bx − b ≤ 0

x ∈ RN

where

C ∈ RN×N , c ∈ RN

A ∈ RM×N , a ∈ RM M equality constraints

B ∈ RK×N , b ∈ RK K inequality constraints

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Learning SVMs

Submanifold Minimization Algorithm
1 min-ineq-cstr-submanifold( C ∈ RN×N , c ∈ RN ,A ∈ RM×N , a ∈ RM ,

B ∈ RK×N , b ∈ RK , x ∈ RN) :

2 K0 := {k ∈ {1, . . . ,K} | (Bx − b)k = 0}
3 while true :
4 while true :

5 Ã :=

(
A

(Bk,.)k∈K0

)
, ã :=

(
a

(bk,.)k∈K0

)
6 (x∗, ν∗) := solve(

(
C ÃT

Ã 0

)(
x
ν

)
=

(
c
ã

)
)

7 if f (x∗) ≥ f (x): break
8 µ := max{µ ∈ [0, 1] | B(x + µ(x∗ − x)− b ≤ 0}
9 x := x + µ(x∗ − x)

10 K0 := {k ∈ {1, . . . ,K} | (Bx − b)k = 0}
11 if v∗ ≥ 0: break
12 choose k ∈ K0 : v∗k < 0
13 K0 := K0 \ {k}
14 return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Learning SVMs

The dual problem for the maximum margin separating hyperplane is such a
constrained quadratic optimization problem:

maximize L =− 1

2

N∑
n=1

N∑
m=1

αnαmynym〈xn, xm〉+
N∑

n=1

αn

w.r.t.
N∑

n=1

αnyn =0

αn ≥0

Set f :=− L

Cn,m :=ynym〈xn, xm〉
cn :=1

xn :=αn

A :=(y1, y2, . . . , yN), a := (0)

Bn,. :=(0, 0, . . . , 0,−1, 0, . . . , 0) (with the -1 at column n), n = 1, . . . ,N

bn :=0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Learning SVMs

Learning SVMs by Submanifold Minimization

1: procedure learn-svm(Dtrain := {(x1, y1), . . . , (xN , yN)})
2: C := 1

2

∑N
n=1

∑N
m=1 αnαmynym〈xn, xm〉

3: c := (1, 1, . . . , 1)
4: A := (y1, y2, . . . , yN), a := (0)
5: B := −I , b := (0, 0, . . . , 0)
6: N+ := |{n ∈ {1, . . . ,N} | yn = +1}|,N− := N − N+

7: αn :=

{
1
N+ , if yn = +1
1

N− , else

8: α := minimize-cstr-ineq(C , c,A, a,B, b, α)
9: β :=

∑N
n=1 αnynxn

10: NS := |{n ∈ {1, . . . ,N} | αn > 0}|
11: β0 := 1

NS

∑N
n=1,αn>0 yn − βT xn

12: return (β0, β)
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Machine Learning 4. Learning SVMs

Example
Find a maximum margin separating hyperplane for the following data:

x1 x2 y

1 1 −1
3 3 +1
4 3 +1

−

+ +

0 1 2 3 4

0
1

2
3

4

x

y
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Machine Learning 4. Learning SVMs

Example

C = (ynym〈xn, xy 〉)n,m =

 2 −6 −7
−6 18 21
−7 21 25

 , c =

 1
1
1

 ,

A = (−1 1 1), a = (0)

B =

 −1 0 0
0 −1 0
0 0 −1

 , b =

 0
0
0



As the equality constraint Aα = a always needs to be met,
it can be added to C :

C ′ =

(
C y

yT 0

)
=


2 −6 −7 −1
−6 18 21 1
−7 21 25 1
−1 1 1 0
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Machine Learning 4. Learning SVMs

Example
Let us start with a random

x =

 2
1
1


that meets both constraints:

Ax − a = 〈y , x〉 = −2 + 1 + 1 = 0

Bx − b =

 −2
−1
−1

 ≤ 0

As none of the inequality constaints is active: I0(x) = ∅.
Step 1: We have to solve

C ′
(

x
µ

)
=

(
c
0

)
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Machine Learning 4. Learning SVMs

Example
This yields

x∗ =

 0.5
1.5
−1.0


which does not fulfill the (inactive) inequality constraint x3 ≥ 0.
So we look for

x + µ(x∗ − x) =

 2
1
1

+ µ

 −1.5
0.5
−2

 ≥ 0

that fulfills all inequality constraints and has large step size µ.
Obviously, µ = 0.5 is best and yields

x := x + µ(x∗ − x) =

 1.25
1.25
0
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Machine Learning 4. Learning SVMs

Example
Step 2: Now the third inequality constraint is active: I0(x) = {3}.

C ′′ =

 C ′ y −e3
yT 0 0
−eT3 0 0

 , =


2 −6 −7 −1 0
−6 18 21 1 0
−7 21 25 1 −1
−1 1 1 0 0

0 0 −1 0 0

 ,

and we have to solve

C ′′

 x
µ
ν∗

 =

 c
0
0


which yields

x∗ =

 0.25
0.25
0

 , ν∗ = 0.5
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Machine Learning 4. Learning SVMs

Example
As x∗ fulfills all constraints, it becomes the next x (step size µ = 1):

x := x∗

As the lagrange multiplier ν∗ ≥ 0, the algorithm stops:
x is optimal.

So we found the optimal

α =

 0.25
0.25
0

 (called x in the optimization algorithm!)

and can compute

β =
N∑

n=1

αnynxn = 0.25 · (−1) ·
(

1
1

)
+ 0.25 · (+1) ·

(
3
3

)
=

(
0.5
0.5

)
β0 can be computed from the original constraints of the points with αn > 0 which
have to be sharp, i.e.,

y1(β0 + 〈β, x1〉) = 1 ⇒ β0 = y1 − 〈β, x1〉 = −1− 〈
(

0.5
0.5

)
,

(
1
1

)
〉 = −2
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Machine Learning 5. Non-separable Problems

Outline

1. Separating Hyperplanes

2. Perceptron

3. Maximum Margin Separating Hyperplanes

4. Learning SVMs

5. Non-separable Problems

6. Support Vectors and Kernels
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Machine Learning 5. Non-separable Problems

Optimal Hyperplane
Inseparable problems can be modeled by allowing some points to be on the
wrong side of the hyperplane.
Hyperplanes are better if
(i) the fewer points are on the wrong side and
(ii) the closer these points are to the hyperplane
(modeled by slack variables ξn).

minimize
1

2
||β||2 + γ

N∑
n=1

ξn

w.r.t. yn(β0 + 〈β, xn〉) ≥1− ξn, n = 1, . . . ,N

ξ ≥0

β ∈RM

β0 ∈R
This problem also is a convex optimization problem
(quadratic target function with linear inequality constraints).
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Machine Learning 5. Non-separable Problems

Dual Problem
Compute again the dual problem:

L :=
1

2
||β||2 + γ

N∑
n=1

ξn −
N∑

n=1

αn(yn(β0 + 〈β, xn〉)− (1− ξn))−
N∑

n=1

µnξn

w.r.t. αn ≥ 0

µn ≥ 0

For an extremum it is required that

∂L

∂β
=β −

N∑
n=1

αnynxn
!

= 0  β =
N∑

n=1

αnynxn

and

∂L

∂β0
=−

N∑
n=1

αnyn
!

= 0

and
∂L

∂ξn
=γ − αn − µn !

= 0 ⇒ αn = γ − µn
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Machine Learning 5. Non-separable Problems

Dual Problem
Input

β =
N∑

n=1

αnynxn,
N∑

n=1

αnyn = 0, αn = γ − µn

into

L :=
1

2
||β||2 + γ

N∑
n=1

ξn −
N∑

n=1

αn(yn(β0 + 〈β, xn〉)− (1− ξ))−
N∑

n=1

µnξn

yields the dual problem

L =
1

2
〈

N∑
n=1

αnynxn,
N∑

m=1

αmymxm〉

−
N∑

n=1

αn(yn(β0 + 〈
N∑

m=1

αmymxm, xn〉)− (1− ξn))

+ γ
N∑

n=1

ξn −
N∑

n=1

µnξn
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Machine Learning 5. Non-separable Problems

Dual Problem

L =
1

2
〈

N∑
n=1

αnynxn,
N∑

m=1

αmymxm〉

−
N∑

n=1

αn(yn(β0 + 〈
N∑

m=1

αmymxm, xn〉)− (1− ξn))

+ γ

N∑
n=1

ξn −
N∑

n=1

µnξn

=
1

2

N∑
n=1

N∑
m=1

αnαmynym〈xn, xm〉+
N∑

n=1

αn −
N∑

n=1

αnynβ0

−
N∑

n=1

N∑
m=1

αnαmynym〈xn, xm〉 −
N∑

n=1

αnξn +
N∑

n=1

αnξn

=− 1

2

N∑
n=1

N∑
m=1

αnαmynym〈xn, xm〉+
N∑

n=1

αn
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Machine Learning 5. Non-separable Problems

Dual Problem

The dual problem is

maximize L =− 1

2

N∑
n=1

N∑
m=1

αnαmynym〈xn, xm〉+
N∑

n=1

αn

w.r.t.
N∑

n=1

αnyn =0

αn ≤γ
αn ≥0

with much simpler constraints.
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Machine Learning 6. Support Vectors and Kernels

Outline

1. Separating Hyperplanes

2. Perceptron

3. Maximum Margin Separating Hyperplanes

4. Learning SVMs

5. Non-separable Problems

6. Support Vectors and Kernels
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Machine Learning 6. Support Vectors and Kernels

Support Vectors / Separable Case
For points on the right side of the hyperplane (i.e., if a constraint holds),

yn(β0 + 〈β, xn〉) > 1

then L is maximized by αn = 0: xn is irrelevant.

For points on the wrong side of the hyperplane (i.e., if a constraint is
violated),

yn(β0 + 〈β, xn〉) < 1

then L is maximized for αn →∞.
For separable data, β and β0 have to be changed to make the constraint
hold.

For points on the margin, i.e.,

yn(β0 + 〈β, xn〉) = 1

αn is some finite value.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 40



Machine Learning 6. Support Vectors and Kernels

Support Vectors / Inseparable Case
For points on the right side of the hyperplane,

yn(β0 + 〈β, xn〉) > 1, ξn = 0

then L is maximized by αn = 0: xn is irrelevant.

For points in the margin as well as on the wrong side of the hyperplane,

yn(β0 + 〈β, xn〉) = 1− ξn, ξn > 0

αn is some finite value.

For points on the margin, i.e.,

yn(β0 + 〈β, xn〉) = 1, ξn = 0

αn is some finite value.

The data points xn with αn > 0 are called support vectors.
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Machine Learning 6. Support Vectors and Kernels

Decision Function
Due to

β̂ =
N∑

n=1

α̂nynxn,

the decision function

ŷ(x) = sign β̂0 + 〈β̂, x〉

can be expressed using the training data:

ŷ(x) = sign β̂0 +
N∑

n=1

α̂nyn〈xn, x〉

Only support vectors are required, as only for them α̂n 6= 0.

Both, the learning problem and the decision function can be expressed
using an inner product / a similarity measure / a kernel 〈x , x ′〉.
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Machine Learning 6. Support Vectors and Kernels

High-Dimensional Embeddings / The “kernel trick”
Example:
we map points from R2 into the higher dimensional space R6 via

h :

(
x1
x2

)
7→



1√
2x1√
2x2
x2
1

x2
2√

2x1x2


Then the inner product

〈h(

(
x1
x2

)
), h(

(
x ′1
x ′2

)
)〉 = 1 + 2x1x ′1 + 2x2x ′2 + x2

1x ′1
2

+ x2
2x ′2

2
+ 2x1x2x ′1x ′2

= (1 + x1x ′1 + x2x ′2)2

can be computed without having to compute the embedding h explicitely !
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Machine Learning 6. Support Vectors and Kernels

Popular Kernels
Some popular kernels are:

linear kernel:

K (x , x ′) := 〈x , x ′〉 :=
N∑

n=1

xnx ′n

polynomial kernel of degree d :

K (x , x ′) := (1 + 〈x , x ′〉)d

radial basis kernel / gaussian kernel :

K (x , x ′) := e−
||x−x′||2

c

neural network kernel / sigmoid kernel :

K (x , x ′) := tanh(a〈x , x ′〉+ b)
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Machine Learning 6. Support Vectors and Kernels

Learning SVMs by Submanifold Minimization

1: procedure learn-svm(Dtrain := {(x1, y1), . . . , (xN , yN)}, γ ∈ R+,K )
2: C := 1

2

∑N
n=1

∑N
m=1 αnαmynymK (xn, xm)

3: c := (1, 1, . . . , 1)
4: A := (y1, y2, . . . , yN), a := (0)

5: B :=

(
−I

I

)
, b :=

(
0
γ

)
6: N+ := |{n ∈ {1, . . . ,N} | yn = +1}|,N− := N − N+

7: αn := γ ·
{

1
N+ , if yn = +1
1

N− , else

8: α := minimize-cstr-ineq(C , c,A, a,B, b, α)
9: NS := |{n ∈ {1, . . . ,N} | αn > 0}|

10: β0 := 1
NS

∑N
n=1,αn>0 yn −

∑N
m=1,αm>0 αmymK (xm, xn)

11: return (β0, α)
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Machine Learning 6. Support Vectors and Kernels

Predicting with SVMs

1: procedure predict-
svm(α ∈ (R+

0 )N , β0 ∈ R,Dtrain := {(x1, y1), . . . , (xN , yN)},K )
2: ŷ := β0
3: for n := 1, . . . ,N with αn 6= 0 do
4: ŷ := ŷ + αnynK (xn, x)

5: return ŷ
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Note: ŷ yields the score/certainty factor, sign ŷ the predicted class.
From Dtrain, only the support vectors (xn, yn) (having αn > 0) are required.



Machine Learning 6. Support Vectors and Kernels

Summary (1/2)

I Binary classification problems with linear decision boundaries can be
rephrased as finding a separating hyperplane.

I In the linear separable case, there are simple algorithms like
perceptron learning to find such a separating hyperplane.

I If one requires the additional property that the hyperplane should
have maximal margin, i.e., maximal distance to the closest points of
both classes, then a quadratic optimization problem with inequality
constraints arises.

I Quadratic optimization problems without constraints as well as with
equality constraints can be solved by linear systems of equations.
Quadratic optimization problems with inequality constraints
require some more complex methods such as submanifold
optimization (a sequence of linear systems of equations).
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Machine Learning 6. Support Vectors and Kernels

Summary (2/2)

I Optimal hyperplanes can also be formulated for the linear
inseparable case by allowing some points to be on the wrong side of
the margin, but penalize for their distance from the margin. This also
can be formulated as a quadratic optimization problem with
inequality constraints.

I The final decision function can be computed in terms of inner
products of the query points with some of the data points (called
support vectors), which allows to bypass the explicit computation of
high dimensional embeddings (kernel trick).
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Machine Learning

Further Readings

I [Hastie et al., 2005, chapter 12.1–3], [Murphy, 2012, chapter
14.1+2+5], [James et al., 2013, chapter 9].
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Machine Learning

Unconstrained Problem
The unconstrained quadratic optimization problem is

minimize f (x) :=
1

2
〈x ,Cx〉 − 〈c , x〉

w.r.t. x ∈RN

(with C ∈ RN×N symmetric and positive definite, c ∈ RN).

The solution of the unconstrained quadratic optimization problem
coincides with the solution of the linear systems of equations

Cx = c

that can be solved by Gaussian Elimination, Cholesky decomposition, QR
decomposition etc.

Proof:

∂f (x)

∂x
= xTC − cT !

= 0⇔ Cx = c
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Machine Learning

Equality Constraints

The quadratic optimization problem with linear equality constraints
is

minimize f (x) :=
1

2
〈x ,Cx〉 − 〈c , x〉

w.r.t. h(x) :=Ax − b = 0

x ∈RN

(with C ∈ RN×N symmetric and positive definite, c ∈ RN , A ∈ RM×N ,
b ∈ RM).
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Machine Learning

Lagrange Function

Definition
Consider the optimization problem

minimize f (x)

subject to g(x) ≤ 0

h(x) = 0

x ∈ RN

with f : RN → R, g : RN → RM and h : RN → RM .

The Lagrange function of this problem is defined as

L(x , λ, ν) := f (x) + 〈λ, g(x)〉+ 〈ν, h(x)〉

λ and ν are called Lagrange multipliers.

The dual problem is defined as

maximize f̄ (λ, ν) := inf
x

L(x , λ, ν)

subject to λ ≥ 0

λ ∈ RM , ν ∈ RM
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Machine Learning

Lower Bounds Lemma

Lemma
Die dual function yields lower bounds for the optimal value of the problem,
i.e.,

f̄ (λ, ν) ≤ f (x∗), ∀λ ≥ 0, ν

Proof:
For feasible x , i.e., g(x) ≤ 0 and h(x) = 0:

L(x , λ, ν) = f (x) + 〈λ, g(x)〉+ 〈ν, h(x)〉 ≤ f (x)

Hence
f̄ (λ, ν) = inf

x
L(x , λ, ν) ≤ f (x)

and especially for x = x∗.
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Machine Learning

Karush-Kuhn-Tucker Conditions

Theorem (Karush-Kuhn-Tucker Conditions)

If
(i) x is optimal for the problem,
(ii) λ, ν are optimal for the dual problem and
(iii) f (x) = f̄ (λ, ν),
then the following conditions hold:

g(x) ≤ 0

h(x) = 0

λ ≥ 0

λngn(x) = 0

∂f (x)

∂x
+ 〈λ, ∂g(x)

∂x
〉+ 〈ν, ∂h(x)

∂x
〉 = 0

If f is convex and h is affine, then the KKT conditions are also sufficient.
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Machine Learning

Karush-Kuhn-Tucker Conditions
Proof: “⇒”

f (x) = f̄ (λ, ν) = inf
x ′

f (x ′) + 〈λ, g(x ′)〉+ 〈ν, h(x ′)〉

≤ f (x) + 〈λ, g(x)〉+ 〈ν, h(x)〉 ≤ f (x)

and therefore equality holds, thus

〈λ, g(x)〉 =
M∑
n=1

λngn(x) = 0

and as all terms are non-positive: λngn(x) = 0.
Since x minimizes L(x ′, λ, ν) over x ′, the derivative must vanish:

∂L(x , λ, ν)

∂x
=
∂f (x)

∂x
+ 〈λ, ∂g(x)

∂x
〉+ 〈ν, ∂h(x)

∂x
〉 = 0
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Machine Learning

Karush-Kuhn-Tucker Conditions

Proof (ctd.): “⇐”
Now let f be convex. Since λ ≥ 0, L(x ′, λ, ν) is convex in x ′.
As its first derivative vanishes at x , x minimizes L(x ′, λ, ν) over x ′, and
thus:

f̄ (λ, ν) = L(x , λ, ν) = f (x) + 〈λ, g(x)〉+ 〈ν, h(x)〉 = f (x)

Therefore is x optimal for the problem and λ, ν optimal for the dual
problem.
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Machine Learning

Equality Constraints
The quadratic optimization problem with linear equality constraints is

minimize f (x) :=
1

2
〈x ,Cx〉 − 〈c , x〉

w.r.t. h(x) :=Ax − b = 0

x ∈RN

(with C ∈ RN×N symmetric and positive definite, c ∈ RN , A ∈ RM×N , b ∈ RM).

The KKT conditons for the optimal solution x∗, ν∗ are:

h(x∗) = Ax∗ − b = 0

∂f (x∗)

∂x
+ 〈ν∗, ∂h(x∗)

∂x
〉 = Cx∗ − c + ATν∗ = 0

which can be written as a single system of linear equations(
C AT

A 0

)(
x∗

ν∗

)
=

(
c
b

)
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Machine Learning

Inequality Constraints

The quadratic optimization problem with linear inequality
constraints is

minimize f (x) :=
1

2
〈x ,Cx〉 − 〈c , x〉

w.r.t. g(x) :=Ax − b ≤ 0

x ∈RN

(with C ∈ RN×N symmetric and positive definite, c ∈ RN , A ∈ RM×N ,
b ∈ RM).

Inequality constraints are more complex to solve.
But they can be reduced to a sequence of equality constraints.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

51 / 40



Machine Learning

Inequality Constraints
At each point x ∈ RN one distinguishes between
active constraints gn with gn(x) = 0 and
inactive constraints gn with gn(x) < 0.

Active set:
I0(x) := {i ∈ {1, . . . ,m} | gn(x) = 0}

Inactive constraints stay inactive in a neighborhood of x and can be
neglected there.
Active constraints are equality constraints that identify points at the
border of the feasible area.
We can restrict our attention to just the points at the actual border, i.e.,
use the equality constraints

hn(x) := gn(x), i ∈ I0

.
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Machine Learning

Inequality Constraints
If there is an optimal point x∗ found with optimal lagrange multiplier
ν∗ ≥ 0:

∂f (x∗)
∂x

+
∑
i∈I0

ν∗n
∂hn(x∗)
∂x

= 0

then x∗ with

λ∗n :=

{
ν∗n , i ∈ I0
0, else

fullfils the KKT conditions of the original problem:

λ∗ngn(x∗) =

{
ν∗nhn(x∗) = 0, i ∈ I0
0gn(x∗) = 0, else

and

∂f (x∗)
∂x

+ 〈λ∗, ∂h(x∗)
∂x

〉 =
∂f (x∗)
∂x

+
∑
i∈I0

ν∗n
∂hn(x∗)
∂x

= 0
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Machine Learning

Inequality Constraints

If the optimal point x∗ on the border has an optimal lagrange multiplier ν∗

with ν∗n < 0 for some i ∈ I0,

∂f (x∗)
∂x

+
∑
i∈I0

ν∗n
∂hn(x∗)
∂x

= 0

then f decreases along hn := gn, thus we can decrease f by moving away
from the border by dropping the constraint i .
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Machine Learning

Inequality Constraints

1 minimize-submanifold(target function f, inequality constraint function g) :
2 x := a random vector with g(x) ≤ 0
3 I0 := I0(x) := {i | gi(x) = 0}
4 do
5 x∗ := argminx f(x) subject to gi(x) = 0, i ∈ I0
6 while f(x∗) < f(x) do
7 α := max{α ∈ [0, 1] | g(x+ α(x∗ − x)) ≤ 0}
8 x := x+ α(x∗ − x)
9 I0 := I0(x)

10 x∗ := argminx f(x) subject to gi(x) = 0, i ∈ I0
11 od
12 Let ν∗ be the optimal Lagrange multiplier for x∗

13 if ν∗ ≥ 0 break fi
14 choose i ∈ I0 : ν

∗
i < 0

15 I0 := I0 \ {i}
16 while true
17 return x
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