Deadline: Th. November $\mathbf{7}^{\text {th }}, \mathbf{1 0 : 0 0}$ Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. Multidimensional Linear Regression

Tom throws a ball and the trajectory is recorded with a camera. From classical mechanics we know that the trajectory is of the form

$$
y(x)=y_{0}+\tan (\theta) x-\frac{g}{2 v_{0}^{2} \cos (\theta)^{2}} x^{2}=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

where y_{0} is the initial height (in m), v_{0} is the initial velocity (in $\frac{m}{s}$) and θ is the angle (in radians).
A. [7p] Fit a linear regression model $\hat{y}(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}=\left(\begin{array}{lll}1 & x & x^{2}\end{array}\right)\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2}\end{array}\right)$.
B. [3p] Given that the gravitational constant is $g=9.81 \frac{m}{s^{2}}$, estimate y_{0}, v_{0} and θ. What is the relative error, given that the true values are $y_{0}=1.8 \mathrm{~m}, \theta=30^{\circ}$ and $v_{0}=14 \frac{\mathrm{~m}}{\mathrm{~s}}$?

2. Gradient Descent - Programming

In this exercise we want to study the behaviour of gradient descent on the test function $f(x)=x^{4}-1.3 x^{3}-$ $1.95 x^{2}+4 x+3.65$. This function is non-negative and has precisely one local (and also global) minimum at $x^{*}=-1, f\left(x^{*}\right)=0$.
A. [3p] Perform gradient descent with starting point $x_{0}=2$ and step length $\alpha=0.1$. How many iterations are needed until the function value drops below 10^{-6} ?
B. [3p] Try again with the same step length, but from the starting point $x_{0}=1.5$. Why does it take more iterations to achieve the target accuracy, although the starting point is closer to the minimum?
C. [1p] What happens when the starting point $x_{0}=-0.5$ with steplength $\alpha=0.15$ is chosen?
D. [3p] Repeat 1-3, but using backtracking line search, using $\alpha=0.1$ and $\beta=0.5$. How many iterations are needed in each case? What happens if α is chosen too small or too large (e.g. $\alpha=0.95$)?

3ネ Bonus Problems

(4 points)
A. [2p] Prove that the normal equation $X^{\top} X \beta=X^{\top} y$ always has at least 1 solution.
B. [2p] Prove that the solution is unique if and only if the features, i.e. the columns of the data matrix $X \in \mathbb{R}^{N \times M}$ (with $N \gg M$), are linearly independent.

Hint: First show part B by proving $\operatorname{Ker}\left(X^{\top} X\right)=\operatorname{Ker}(X)$. Then prove A by showing $\operatorname{Im}\left(X^{\top} X\right)=\operatorname{Im}\left(X^{\top}\right)$ through application of the fundamental theorem $\operatorname{Im}(X)^{\perp}=\operatorname{Ker}\left(X^{\top}\right)$.

