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Deadline: Th. November 21th , 10:00 Drop your printed or legible handwritten submissions into the boxes at
Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. Model Selection (8 points)

A. [2p] Explain how one can detect whether a model is over- or underfitting.

B. [2p] Explain how one can deal with a model that’s over- or underfitting.

C. [2p] Consider a binary classification problem where each class is generated by a Normal distribution.

• 50% of the datapoints belong to class A and are distributed as p(x | y = A) = N (x | µA, 1)

• 50% of the datapoints belong to class B and are distributed as p(x | y = B) = N (x | µB , 1)

What the maximum accuracy any classifier could achieve for this problem, depending on δ = µA − µB? (you can
assume µA > µB). The minimal possible error is also known as the irreducible error or Bayes error rate.

D. [2p] Consider fitting a model on a new dataset. If we observe a very high training loss value, what does this
tell us about the quality of the model? Is it over- or underfitting?

2. Bayesian Information Criterion (8 points)

The is commonly assumed in regression problems that the target variables y are generated by a deterministic
function f and an additive, white noise error term ε, i.e.

yi = f(xi) + εi where εi
iid∼ N (0, σ2)

The goal is to recover the function f . Towards this goal, a parametric function ŷ(x;β) is chosen, and the model
is learned by maximizing the conditional likelihood p(y | x) = N (y | ŷ(x;β), σ2).

A. [2p] Show that for such a model, the conditional log-likelihood has the form

`(β, σ2) = − 1
2σ2 RSS− 1

2N log
(
2πσ2

)

B. [2p] Show that the maximum likelihood estimate for σ2 is σ̂2 = MSE(ŷ) = 1
N ‖y − ŷ(x;β)‖22.

C. [1p] Conclude that, up to constant terms, for models of the kind described above the bic is given as:

bic(ŷ) = − 1
2N log(MSE(ŷ))− 1

2D log(N). (1)

Recall that in tutorial 1, we fitted a linear regression model to predict the chance of a student passing, given the
number of bonus points he obtained. We later discussed how a logistic model would have been better suited for
the task. Many students also suggested a quadratic model in their submissions. Below, you find a summary of
the models, their optimal parameters and a plot.

ŷlin(x) = α0 + α1x α̂ =

(
0.46
0.16

)

ŷquad(x) = β0 + β1x+ β2x
2 β̂ =

 0.30
0.44
−0.07


ŷlog(x) = σ(γ0 + γ1x) γ̂ =

(
−0.71

1.44

)
(a) optimal parameters of the models (b) plot of the models
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D. [3p] Use formula (1) that we derived in parts A-C to determine which is the best model according to the
bic criterion. In contrast, which model has the lowest mse?

3. Ridge Regression & Hyperparameter Optimization (10 points)

Many hyperparameters are discrete and thus cannot directly be trained by gradient descent. However as we will
see continuous hyperparameters such as the regularization strength λ in Ridge Regression can be optimized by
Gradient Descent. Assume we are given a training set (X, y) and a validation set (X̃, ỹ).

L train(β) = ‖y −Xβ‖22 + λ‖β‖22
L val(β) = ‖ỹ − X̃β‖22

And define β̂(λ) = argmin
β

L train(β). Note that we restrict λ ≥ 0 throughout this problem.

A. [2p] Show that the optimal parameters β̂ of Ridge Regression satisfy the modified normal equation

(XTX + λ I)β̂ = XTy

B. [2p] What happens when we (erroneously) try to learn λ by updating λ← λ− η ∂
∂λL train(β, λ)?

C. [4p] (Using jacobian layout convention). Compute the outer gradient

D. [2p] Show that if the training set is equal to the validation set, i.e. X̃ = X and ỹ = y, then the optimal

choice is no regularization at all, i.e. argmin
λ

L val(β̂(λ)) = 0.
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