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Deadline: Th. November 21t" , 10:00 Drop your printed or legible handwritten submissions into the boxes at
Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. Model Selection (8 points)

A. [2p] Explain how one can detect whether a model is over- or underfitting.
B. [2p] Explain how one can deal with a model that’s over- or underfitting.

C. [2p] Counsider a binary classification problem where each class is generated by a Normal distribution.
e 50% of the datapoints belong to class A and are distributed as p(z |y = A) = N(z | pa,1)
e 50% of the datapoints belong to class B and are distributed as p(z | y = B) = N(x | up, 1)

What the maximum accuracy any classifier could achieve for this problem, depending on § = ua4 — pug? (you can
assume f14 > pp). The minimal possible error is also known as the érreducible error or Bayes error rate.

D. [2p] Consider fitting a model on a new dataset. If we observe a very high training loss value, what does this
tell us about the quality of the model? Is it over- or underfitting?
2. Bayesian Information Criterion (8 points)

The is commonly assumed in regression problems that the target variables y are generated by a deterministic
function f and an additive, white noise error term e, i.e.

yi = f(x;) +¢; where ¢ ifi\(il./\/(o,dz)

The goal is to recover the function f. Towards this goal, a parametric function g(x; 8) is chosen, and the model
is learned by maximizing the conditional likelihood p(y | ) = N (y | §(x; B), 0?).

A. [2p] Show that for such a model, the conditional log-likelihood has the form

((B,0%) = —553 RSS —1 N log(2m0?)

B. [2p] Show that the maximum likelihood estimate for o2 is 6% = MSE(9) = +|ly — 9(z; 8)||3.

C. [1p] Conclude that, up to constant terms, for models of the kind described above the BIC is given as:

BIC(f) = —3N log(MSE(§)) — 3D log(N). (1)

Recall that in tutorial 1, we fitted a linear regression model to predict the chance of a student passing, given the
number of bonus points he obtained. We later discussed how a logistic model would have been better suited for
the task. Many students also suggested a quadratic model in their submissions. Below, you find a summary of
the models, their optimal parameters and a plot.
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(a) optimal parameters of the models (b) plot of the models
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D. [3p] Use formula (1) that we derived in parts A-C to determine which is the best model according to the
BIC criterion. In contrast, which model has the lowest MSE?

3. Ridge Regression & Hyperparameter Optimization (10 points)

Many hyperparameters are discrete and thus cannot directly be trained by gradient descent. However as we will
see continuous hyperparameters such as the regularization strength A in Ridge Regression can be optimized by

Gradient Descent. Assume we are given a training set (X,y) and a validation set (X, %)

L (8) = |ly — X B2+ M52
2vNB) = 117 - XBl3

And define S(\) = argmin £ (3). ‘Note that we restrict A > 0 throughout this problem.
B

A. [2p] Show that the optimal parameters B of Ridge Regression satisfy the modified normal equation

(XX +ADB = X"y

B. [2p] What happens when we (erroneously) try to learn A by updating A < A — n%f“ain(ﬁ, A)?

C. [4p] (Using jacobian layout convention). Compute the outer gradient

D. [2p] Show that if the training set is equal to the validation set, i.e. X = X and y = vy, then the optimal
choice is no regularization at all, i.e. argmin Zv3(3(\)) = 0.
A
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