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Deadline: Th. November 28th , 13:00 Drop your printed or legible handwritten submissions into the boxes at
Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. L1 regularization (10 points)

A. [7p] Fit a linear regression model (including bias) with L1 regularization to the dataset from Table 1 by
performing 2 iterations of coordinate descent (update each parameter twice). Use β(0) = 0 and λ = 1.

x1 x2 y

1 1 1.4
1 -1 1.6

-1 0 0.5
-1 -1 0.6

Table 1

B. [3p] The elastic-net model is a linear model with a mix of L1 and L2 regularization.

Lenet(β) =
1

2N
‖y −Xβ‖22 + λ

(
α‖β‖1 + (1− α) 1

2‖β‖
2
2

)
Note that if α = 1, elastic net is the same as lasso and for α = 0 it is the same as ridge regression. For
α ∈ (0, 1) it is something in between. We trained an Elastic Net model 4 times on a regression task, each time
choosing a different trade-off α ∈ {0, 0.25, 0.5, 1}. The resulting regularization paths, as well as the number
of non-zero coefficients at different total regularization strength λ is shown in Figure 1. Explain which figure
corresponds to which choice of α.

Figure 1: Regularization paths of the 4 models

2. Variable Selection – Programming (10 points)

Use the following code to load the famous ”Boston Housing” dataset (alternatively data-files will be uploaded to
the LearnWeb as well)

import numpy as np

from sklearn.datasets import load_boston

np.random.seed (2019)

dataset = load_boston ()

Xdata = dataset[’data’]

Ydata = dataset[’target ’]

N, M = Xdata.shape

ridx = np.random.permutation(N)

split = int (0.8*N)

Xtrain = Xdata[ridx[: split]]

Ytrain = Ydata[ridx[: split]]

Xvalid = Xdata[ridx[split :]]

Yvalid = Ydata[ridx[split :]]
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A. [7p] Implement both forward search and backward search and apply them to the provided data using a
linear regression model. At the start of each outer loop, report the currently selected variables V as well as the
loss on the training and validation set.

B. [3p] Repeat the experiment 100 times using random train/valid splits (you’ll need to remove np.random.

seed(2019)). Whats the average improvement of forward/backward search compared to fitting with the whole
dataset? How often does each of the 13 variables end up in the final selection?

3?. Parameter Variance – OLS vs Ridge Regression (5 points)

For the following problem, we assume that the ground truth is is a linear function y(x) = xTβ̂+ε with ε
iid∼ N (0, σ2)

and we are given a finite data sample (X,Y ). From the lecture we know that the ordinary least squares (ols)

estimator β̂ols = (XTX)−1XTY satisfies:

• E[β̂ols ] = β̂

• V[β̂ols ] = (XTX)−1σ2

In particular, we note that the ols estimator is unbiased!

A. [2p] Show that the ridge estimator β̂ridge = (XTX + λ I)−1XTy satisfies

• E[β̂ridge ] = (XTX + λ I)−1XTXβ̂

• V[β̂ridge ] = (XTX + λ I)−1XTX(XTX + λ I)−1σ2

In particular, we note that the ridge estimator is biased!

B. [3p] Given two covariance matrices ΣA and ΣB, we say that ΣA is strictly greater than ΣB (in symbols

ΣA > ΣB) iff ΣA − ΣB is positive definite. (This is the so called Löwner order). Show that β̂ols has stricly

greater variance than β̂ridge

Hint: Note that (XTX)−1 and XTX + λ I commute. More generally, if p and q are polynomial functions, then
p(A)q(A) = q(A)p(A) and likewise q(A)−1p(a) = p(A)q(A)−1 for any square matrix A.

https://en.wikipedia.org/wiki/Loewner_order
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