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Deadline: Th. December 5th , 10:00 Drop your printed or legible handwritten submissions into the boxes at
Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. Distance Measures (14 points)

A. [4p] Compute the Levenshtein distance between the two strings machine and learning

M A C H I N E

0 1 2 3 4 5 6 7
L 1
E 2
A 3
R 4
N 5
I 6
N 7
G 8

B. [3p] Show that the Hamming distance between two sets

distHam(X,Y ) = |(X \ Y ) ∪ (Y \X)| = |(X ∪ Y ) \ (Y ∩X)|

satisfies the 3 properties (positive definiteness, symmetry and triangle inequality) a of distance measures.

Hint: Draw some Venn diagrams!

C. [4p] In R2, draw all points that are distance 1 away from the origin with respect to

1. The taxicab distance dist(x, y) = ‖x− y‖1

2. The euclidean distance dist(x, y) = ‖x− y‖2

3. The maximum distance dist(x, y) = ‖x− y‖∞

4∗. The Mahalanobis distance with matrix Σ−1 = ( 1 0.5
0.5 1 )

D. [3p] Given a symmetric, positive definite covariance matrix Σ, show that the Mahalanobis distance

distMaha(x, y) =
√

(x− y)TΣ−1(x− y)

satisfies the 3 defining properties of a distance measure.

Hint: Try to make use of the following facts from linear algebra.

• If 〈x|y〉 is an inner product, then ‖x‖ def
=
√
〈x|x〉 is a norm.

• If ‖x‖ is a norm, then dist(x, y)
def
= ‖x− y‖ is a distance measure.

2. K Nearest Neighbors (10 points)

A. [3p] We want to predict whether or not the topic of a given text is machine learning (document classification
task). To do this we use the set (not a multi-set!) of a all capitalized acronyms appearing in the text as features.
Given the training data from Table 1, apply a knn classifier with K = 3, using the Hamming distance

distHam(X,Y ) = |(X \ Y ) ∪ (Y \X)| = |(X ∪ Y ) \ (Y ∩X)|

to predict whether the following text is related to machine learning (y = 0 ! no, y = 1 ! yes):
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. . . Logistic regression and probit regression are more similar to
LDA than ANOVA is, as they also explain a categorical variable
by the values of continuous independent variables. These other
methods are preferable in applications where it is not reasonable
to assume that the independent variables are normally distributed,
which is a fundamental assumption of the LDA method. LDA is
also closely related to principal component analysis (PCA) and
factor analysis in that they both look for linear combinations of
variables which best explain the data.

Figure 1: Excerpt from the Wikipedia article on Linear Dis-
criminant Analysis

X Y

{KNN, SBS, PSB} 0
{ANOVA, DOE} 1
{DUI, LDA, USA} 0

{SVD, ONB, GSL, PCA} 1
{ML, XML, HTML} 0
{LDA, QDA, PCA} 1

Table 1: training data

B. [2p] One of the problems of the distance metric used in 2A is that two text will automatically be seen as
dissimilar if one of them contains a lot of acronyms and the other does not, irrespective of their topics. Explain
qualitatively how the use of the Jaccard distance

distJac(X,Y ) = 1− |X ∩ Y |
|X ∪ Y |

=
distHam(X,Y )

|X ∪ Y |

instead of the Hamming distance would circumvent this problem.

Figure 2: toy dataset
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C. [3p] Given the dataset from Figure 2, use KNN
Regression to predict the value at x = 5. Use the
taxicab metric and try with K = 2, K = 3 and K = 4.
Comment on the result.

D. [2p] Given that the ground truth is

y(x) =

{
0.5x : x ≤ 5

7.5− x : x > 5

Explain why a KNN model would never be able to
predict the true value y(5) = 2.5, irrespective of the
choice of K or distance metric.

3?. Locality Sensitive Hashing (4 points)

The idea of LSH is that, in some sense, if x and y
are close points in a high dimensional space, then – on
average – they stay close when projecting them onto
a randomly selected low dimensional space; and when
they are far away they – on average – stay far away.
Given the two datapoints on the unit circle x = ( 1

0 )

and y =
(

cos(θ)
sin(θ)

)
and a randomly selected line through

the origin with parallel vector a =
(

cos(φ)
sin(φ)

)
. We are

interested in comparing the distance of the two points
x, y in R2 against the distance of their projections x′, y′

onto the random line spanned by a.

• Show that ‖x− y‖22 = 2(1− cos(θ))

• Show that Eφ∼[0,2π][‖x′ − y′‖22] = 1− cos(θ)

In particular, on average the error made by estimat-
ing ‖x − y‖2 with ‖x′ − y′‖2 is around

√
2 − 1 ≈ 40%.

This value gets reduced more when one moves to higher
dimensional spaces.

x =
(
1
0

)

y =
(
cos θ
sin θ

)

θ

φ

L

y′

x′

‖x− y‖2

‖x′ − y′‖2

a =
(

cosφ
sinφ

)
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