
Tutorial 8 – Dec. 12, 2019
Machine Learning 1

Prof. Schmidt-Thieme, Randolf Scholz 1/2

Deadline: Th. December 19th , 13:15 Drop your printed or legible handwritten submissions into the boxes at
Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

Convention: Always use splitting rules of the form ”xi < value” for numerical and ”xi = cat.” for
categorical features. Draw the ”true” node to the left and the ”false” node to the right!

1. Decision Trees (12 points)

In the lecture you have seen the following image of a partition

1 2 3 4 5

1

2

3

4

5

A

B
C

D
E

F G

H
I

x1

x2

Figure 1: Partition

A. [4p] Construct a decision tree (without explicitly training) which realizes this partition.

B. [4p] We want to predict gender of an elephant given its weight and species (Asian elephant Elephas maximus

or African elephant Loxodonta africana).

Weight Species Gender

5500kg African male
3500kg African female
3400kg Asian male
2700kg Asian female

Table 1

By hand, train a Decision Tree using the Information Gain splitting criterion on the data-set provided by
Table 1. Draw the learned tree.

C. [2p] Draw a minimal depth Decision tree that solves the classification problem from 1B.

D. [2p] Explain why the learning algorithm does not find the low depth solution. How could one modify the
learning procedure or the model such that it does learn a decision tree of depth ≤ 2 for this task?

2. Decision Tree – Programming (12 points)

A. Implement a Decision Tree for Classifier for problems with numerical data in the form of a scikit-learn

estimator. You will have to implement 2 classes: the model class itself and a tree class. A rough outline is given
below (you don’t have to stick to it, it is merely a suggestion).

1. A model class with 3 methods: fit(X, Y) to fit the model to the data, predict(X) to compute the
prediction and score(X, Y) which computes the accuracy of the prediction. (you are not required to
implement any extra options so you can skip __init__)

Tutorial 8 – Dec. 12, 2019
Machine Learning 1

Prof. Schmidt-Thieme, Randolf Scholz 2/2

import numpy as np

class decision_tree:

def fit(self , X, Y):

self.tree = Tree().split(X, Y)

return self

def predict(self , X):

return self.tree(X)

def score(self , X, Y):

Yhat = self.predict(X)

return accuracy of the prediction

2. A Tree class that has a method for to split, using the Gini-index as the splitting criterion. As a stopping
criterion, simply keep splitting until either there is only 1 sample left or all samples belong to the same
class.

import numpy as np

class Tree:

def __call__(self , X):

if self.is_leaf:

return majority class label (from training data)

else: obtain results from child nodes (recursion !)

return prediction

def split(self , X, Y):

if self.stop_criterion(X, Y):

make the node a leaf

else: determine the best split and recurse

self.rule = best splitting rule

split = self.rule(X)

self.left = Tree().split(X[split], Y[split])

self.right = Tree().split(X[~split], Y[~split])

return self

@staticmethod

def split_criterion(split , X, Y):

split should be a boolean array indicating wether the data satisfies

the selected rule or not

return gini index of the split

@staticmethod

def stop_criterion(X, Y):

implement the stopping criterion. keep splitting until either all data

belongs to the same class or there is only 1 sample left

return True/False

@staticmethod

def _make_rule(idx , val):

return the splitting rule (univariate splits for numerical data)

return lambda X: X[:, idx] < val

B. Compare your own implementation against sklearn.tree.DecisionTreeClassifier by evaluating them
on both the Iris and Wisconsin Breast Cancer datasets. You can load these datasets via sklearn.datasets.

load_breast_cancer and sklearn.datasets.load_iris.
Use sklearn.model_selection.train_test_split with the settings test_size=0.3 and random_state

=2019 to create the training/test splits.

	
	[4p]
	[4p]
	[2p]
	[2p]

	
	
	

