Deadline: Fr. January 10 ${ }^{\text {th }}, \mathbf{1 5 : 0 0}$ Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. SVM practice

A. [6p] To train an SVM we have to solve the following optimization problem (primal form)

$$
\min _{\beta_{0}, \beta, \xi} \frac{1}{2}\|\beta\|^{2}+\gamma \sum_{i=1}^{n} \xi_{i} \quad \text { s.t. } \quad \begin{array}{rlr}
y_{i}\left(\beta_{0}+\left\langle\beta \mid x_{i}\right\rangle\right) & \geq 1-\xi_{i} & \text { for all } i \tag{1}\\
\xi_{i} & \geq 0 &
\end{array}
$$

Or equivalently the dual form (and recover $\beta=\sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}, \beta_{0}=\frac{1}{\left|\left\{n: \alpha_{n} \neq 0\right\}\right|} \sum_{n: \alpha_{n} \neq 0}\left(y_{n}-\left\langle\beta \mid x_{n}\right\rangle\right)$

$$
\max _{\alpha}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i} \mid x_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i} \quad \text { s.t. } \quad \begin{align*}
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \tag{2}\\
& 0 \leq \alpha_{i} \leq \gamma
\end{align*}
$$

Rewrite both of these problems as an inequality constrained QPs, i.e. optimization problems of the form:

$$
\min _{z} \frac{1}{2} z^{\top} C z+c^{\top} z \quad \text { s.t. } \quad \begin{align*}
& A z=a \tag{3}\\
& B z \leq b
\end{align*}
$$

By explicitly constructing the matrices/vectors A, a, B, b, C, c. Note that z should be the concatenation of all variables.
B. [2p] Let $\gamma=1$. Explicitly construct the matrices/vectors (A, a, B, b, C, c) of the primal form given the data from Table 1.
C. [2p] Let $\gamma=1$. Explicitly construct the matrices/vectors (A, a, B, b, C, c) of the dual form given the data from Table 1.
D. [2p] Explain why the Active Set Algorithm is generally not applicable to the primal form. Is it always applicable to the dual form?

x_{1}	x_{2}	y
0	0	-1
-1	-1	1
1	0	1
0	1	1

Table 1: toy data

