Deadline: Th. January $\mathbf{1 6}^{\text {th }}, \mathbf{1 4 : 0 0}$ Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. Conditional independence

A. [2p] What does it mean in lay-mans terms if we say two events A and B are conditionally independent given that an event C occurred?
B. [2p] Draw the Bayesian network associated with the joint pdf:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{5} \mid x_{1}, x_{3}, x_{4}\right) p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)
$$

C. [4p] Consider the following Bayesian Networks

(a) "chain"

(b) "split" or "fork"

(c) "join" or "collider"

These graphs are associated with the joint probabilities:
(a) $p(x, y, z)=p(z \mid y) p(y \mid x) p(x)$
(b) $p(x, y, z)=p(y \mid x) p(z \mid x) p(x)$
(c) $p(x, y, z)=p(z \mid x, y) p(y) p(x)$

Show that, for the different cases respectively, holds:
(a) X and Z are conditionally independent given Y
(b) Y and Z are conditionally independent given X
(c) X and Y are generally not conditionally independent given Z^{1}

2. Naïve Bayes

Given the data from Table 1, we want to predict the probability that a patient has lung-cancer given that we know whether or not they show symptoms of dyspnoea (breathing problems), are a smoker and live in an area with high air pollution. We consider two different graphical models:

(a) "Naïve Bayesian classifier"

(b) "Tree Augmented Naïve Bayesian classifier"
A. [2p] For both models, write out the associated joint probability.
B. [8p] Train both models with the provided data for patient 1-12. Use $\alpha=1$, i.e. add-one-smoothing for the Dirichlet prior. Provide the conditional probability tables (CPT) for each node.

[^0]C. [2p] What do both models predict for the missing values for patient 13 and 14 ?

patient	air-pollution	smoker	dyspnoea	cancer
1	high	yes	yes	yes
2	high	yes	yes	yes
3	high	yes	yes	no
4	high	yes	no	yes
5	high	yes	no	yes
6	high	no	yes	yes
7	high	no	yes	no
8	low	yes	yes	yes
9	low	yes	yes	no
10	low	yes	no	no
11	low	no	yes	no
12	low	no	no	no
13	low	yes	yes	$?$
14	low	yes	$?$	yes

Table 1: Synthetic lung-cancer data-set

[^0]: ${ }^{1}$ Provide a counter example.

