Machine Learning 1 Prof. Schmidt-Thieme, Randolf Scholz

Deadline: Th. January 16th , 14:00 Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. Conditional independence

A. [2p] What does it mean in lay-mans terms if we say two events A and B are conditionally independent given that an event C occurred?

B. [2p] Draw the Bayesian network associated with the joint pdf:

$$p(x_1, x_2, x_3, x_4, x_5) = p(x_5 | x_1, x_3, x_4) p(x_4 | x_2, x_3) p(x_3 | x_1, x_2) p(x_2 | x_1) p(x_1)$$

C. [4p] Consider the following Bayesian Networks

These graphs are associated with the joint probabilities:

(a)
$$p(x, y, z) = p(z|y)p(y|x)p(x)$$

(b)
$$p(x, y, z) = p(y|x)p(z|x)p(x)$$

(c)
$$p(x, y, z) = p(z|x, y)p(y)p(x)$$

Show that, for the different cases respectively, holds:

- (a) X and Z are conditionally independent given Y
- (b) Y and Z are conditionally independent given X
- (c) X and Y are generally **not** conditionally independent given Z^1

2. Naïve Bayes

Given the data from Table 1, we want to predict the probability that a patient has lung-cancer given that we know whether or not they show symptoms of dyspnoea (breathing problems), are a smoker and live in an area with high air pollution. We consider two different graphical models:

A. [2p] For both models, write out the associated joint probability.

B. [8p] Train both models with the provided data for patient 1-12. Use $\alpha = 1$, i.e. add-one-smoothing for the Dirichlet prior. Provide the conditional probability tables (CPT) for each node.

1/2

(8 points)

¹Provide a counter example.

Machine Learning 1 Prof. Schmidt-Thieme, Randolf Scholz

"Idesheil

C. [2p] What do both models predict for the missing values for patient 13 and 14?

patient	air-pollution	smoker	dyspnoea	cancer
1	high	yes	yes	yes
2	high	yes	yes	yes
3	high	yes	yes	no
4	high	yes	no	yes
5	high	yes	no	yes
6	high	no	yes	yes
7	high	no	yes	no
8	low	yes	yes	yes
9	low	yes	yes	no
10	low	yes	no	no
11	low	no	yes	no
12	low	no	no	no
13	low	yes	yes	?
14	low	yes	?	yes

Table 1: Synthetic lung-cancer data-set