Deadline: Th. January $\mathbf{2 3}^{\text {th }}, \mathbf{1 4 : 0 0}$ Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. K Means Clustering

A. [2p] Compute the (squared) distance matrix $D_{i j}=\operatorname{dist}_{\text {eucl. }}\left(x_{i}, x_{j}\right)^{2}$, given the data from Table 1.
B. [4p] Perform K-means clustering on the dataset from Table 1. Use the first and last datapoints as initial centers $(K=2)$. Given the final parameters, which cluster would $x^{*}=\binom{1}{1}$ belong to?
C. [1p] For a set of points $\left(x_{n}\right)_{n=1: N}$ in \mathbb{R}^{m}, show that the mean $\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n}$ is the solution to the optimization problem

$$
\begin{equation*}
\hat{\mu}=\underset{\mu \in \mathbb{R}^{m} m}{\operatorname{argmin}} \sum_{i=1}^{N} \operatorname{dist}_{\text {eucl. }}\left(x_{n}, \mu\right)^{2} \tag{1}
\end{equation*}
$$

I.e. for a set of points, their mean can be characterized as the point which is, on average, closest to all the other points with respect to the squared euclidean distance.
D. [3p] For a set of points $\left(x_{n}\right)_{n=1: N}$ in \mathbb{R}^{m}, the geometric median is defined as the point

$$
\begin{equation*}
\hat{\mu}=\underset{\mu \in \mathbb{R}^{m}}{\operatorname{argmin}} \sum_{n=1}^{N} \operatorname{dist}_{\text {eucl. }}\left(x_{n}, \mu\right) \tag{2}
\end{equation*}
$$

Note that in contrast to the mean, (2) does not have a closed form solution. However, the minimum can be found numerically by a fixed point iteration scheme (algorithm 1). Given the dataset from Table 2 (rows are datapoints!), compute both the mean and the geometric median. What happens to both if we change the last datapoint to $\binom{100}{0}$?

x_{1}	x_{2}
0	0
0	1
-1	2
2	0
3	0
4	-1

Table 1

x_{1}	x_{2}
-1	-1
-1	1
1	-1
1	1
10	0

Table 2

```
Algorithm 1: Weiszfeld's algorithm
    \(\mu^{(0)}=\frac{1}{N} \sum_{n=1}^{N} x_{n}\);
    for \(t=0,1,2 \ldots\), max_iter do
        \(\mu^{(t+1)}=\left(\sum_{n=1}^{N} x_{n}\left\|x_{n}-\mu^{(t)}\right\|^{-1}\right) /\left(\sum_{n=1}^{N}\left\|x_{n}-\mu^{(t)}\right\|^{-1}\right) ;\)
        if converged then
            return \(\mu\)
```


2. Gaussian Mixture Models (GMMs)

Two datasets ("MOONS" and "STRIPES") were each clustered by 3 different methods: K-means clustering, Gaussian-Mixture-Models and Hierarchical Clustering (single link). The results are shown in Table 3.

Dataset

Method A

Method B
Method C

Table 3: Different Clustering Methods
A. [2p] Decide which method corresponds to A, B and C. Explain your decision.
B. [6p] Given the data from Table 1, and the initial configuration $\pi_{1}, \pi_{2}=\frac{1}{2}, \mu_{1}=\binom{0}{1}, \mu_{2}=\binom{3}{0}, \Sigma_{1}, \Sigma_{2}=\mathbb{I}$, perform 1 iteration of the (soft partition) EM algorithm to fit a GMM. Which cluster would $x^{*}=\binom{1}{1}$ belong to according the initial/final parameters?

3. Hierarchical Clustering

A. [2p] Compute the distance matrix $D_{i j}=\operatorname{dist}\left(x_{i}, x_{j}\right)$, using the Manhatten distance (i.e. L^{1}), given the data from Table 4.
B. [4p] Perform agglomerative Hierarchical Clustering using single linkage as the cluster distance measure. Draw the associated tree (as in slides $26 / 27$).

x_{1}	x_{2}
0	0
1	0
2	0
-0.5	-1
0.5	-1
0	-1.5

Table 4

