Tutorial 11 – Jan. 16, 2019

Nersiz Machine Learning 1 Prof. Schmidt-Thieme, Randolf Scholz

Deadline: Th. January 23th, 14:00 Drop your printed or legible handwritten submissions into the boxes at Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. K Means Clustering

A. [2p] Compute the (squared) distance matrix $D_{ij} = \text{dist}_{\text{eucl.}}(x_i, x_j)^2$, given the data from Table 1.

B. [4p] Perform K-means clustering on the dataset from Table 1. Use the first and last datapoints as initial centers (K = 2). Given the final parameters, which cluster would $x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ belong to?

C. [1p] For a set of points $(x_n)_{n=1:N}$ in \mathbb{R}^m , show that the mean $\hat{\mu} = \frac{1}{N} \sum_{n=1}^N x_n$ is the solution to the optimization problem

$$\hat{\mu} = \underset{\mu \in \mathbb{R}^m}{\operatorname{argmin}} \sum_{i=1}^{N} \operatorname{dist}_{\operatorname{eucl.}}(x_n, \mu)^2 \tag{1}$$

I.e. for a set of points, their mean can be characterized as the point which is, on average, closest to all the other points with respect to the squared euclidean distance.

D. [3p] For a set of points $(x_n)_{n=1:N}$ in \mathbb{R}^m , the geometric median is defined as the point

$$\hat{\mu} = \underset{\mu \in \mathbb{R}^m}{\operatorname{argmin}} \sum_{n=1}^{N} \operatorname{dist_{eucl.}}(x_n, \mu) \tag{2} \begin{array}{c} -1 \\ -1 \\ 1 \end{array}$$

Note that in contrast to the mean, (2) does not have a closed form solution. However, the minimum can be found numerically by a fixed point iteration scheme (algorithm 1). Given the dataset from Table 2 (rows are datapoints!), compute both the mean and the geometric median. What happens to both if we change the last datapoint to $\begin{pmatrix} 100 \\ 0 \end{pmatrix}$?

Algorithm 1: Weiszfeld's algorithm

 $\begin{array}{c|c} \mathbf{1} & \mu^{(0)} = \frac{1}{N} \sum_{n=1}^{N} x_n ; \\ \mathbf{2} & \mathbf{for} \ t = 0, 1, 2 \dots, \ max_iter \ \mathbf{do} \\ \mathbf{3} & \left| \begin{array}{c} \mu^{(t+1)} = \left(\sum_{n=1}^{N} x_n \| x_n - \mu^{(t)} \|^{-1} \right) \right/ \left(\sum_{n=1}^{N} \| x_n - \mu^{(t)} \|^{-1} \right) ; \end{array}$ if converged then return μ 5

2. Gaussian Mixture Models (GMMs)

(8 points)

Two datasets ("MOONS" and "STRIPES") were each clustered by 3 different methods: K-means clustering, Gaussian-Mixture-Models and Hierarchical Clustering (single link). The results are shown in Table 3.

1/2

 x_2

0

1

 $\mathbf{2}$

0

0

 x_1

0

0

-1

 $\mathbf{2}$

3

4 -1

Table 1

x_1	x_2
-1	-1

1

Table 2

10

1 -1

1

0

"deshe

Table 3: Different Clustering Methods

A. [2p] Decide which method corresponds to A, B and C. Explain your decision.

B. [6p] Given the data from Table 1, and the initial configuration $\pi_1, \pi_2 = \frac{1}{2}, \mu_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \mu_2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \Sigma_1, \Sigma_2 = \mathbb{I}$, perform 1 iteration of the (soft partition) EM algorithm to fit a GMM. Which cluster would $x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ belong to according the initial/final parameters?

3. Hierarchical Clustering

A. [2p] Compute the distance matrix $D_{ij} = \text{dist}(x_i, x_j)$, using the Manhatten distance (i.e. L^1), given the data from Table 4.

B. [4p] Perform agglomerative Hierarchical Clustering using single linkage as the cluster distance measure. Draw the associated tree (as in slides 26/27).

(6 points)

x_1	x_2
0	0
1	0
2	0
-0.5	-1
0.5	-1
0	-1.5

Table 4