
Tutorial 12 – Jan. 23, 2019
Machine Learning 1

Prof. Schmidt-Thieme, Randolf Scholz 1/1

Deadline: Th. January 30th , 14:00 Drop your printed or legible handwritten submissions into the boxes at
Samelsonplatz. Alternatively upload a .pdf file via LearnWeb. (e.g. exported Jupyter notebook)

1. Singular Value Decomposition (4 points)

Let X be a N ×M matrix of rank K with SVD X = UΣVT. Then X+ = V Σ+UT is called it’s Moore-Penrose
pseudoinverse, where

Σ =


σ1

. . .

σK

0

0 0

 Σ+ =


σ−1
1

. . .

σ−1
K

0

0 0


Note that Σ is N ×M while Σ+ is M ×N with appropriate block sizes for the zero matrices.

A. [2p] Verify that the pseudoinverse satisfies XX+X = X and X+XX+ = X+

B. [2p] Show that β̂ols = X+y, i.e. β = X+y solves the normal equation XTXβ = XTy of linear regression,
even if XTX is not invertible.

2. SVD for Image Compression (8 points)

https://photojournal.jpl.nasa.

gov/tiff/PIA18314.tif

Recall the Eckart-Young-Theorem: The solution to the constrained
minimization problem

min ‖X − X̃‖22 s.t. rank(X̃) ≤ k

is given by the truncated svd of X, i.e. X̃ = U1:k diag(σ1:k)VT
1:k. One

possible application of this is image compression: Assume we are
given a matrix with values between 0 and 255, representing a gray
scale image. Then, instead of saving X, which requires O(N ·M) bits,
we save U1:k, σ1:k, V1:k which requires only O(K(N +M + 1)) bits of
memory.

A. Download the shown image of Saturn from NASA’s repository.
It’s a 8-bit 1024x1024 gray scale image (≈ 1049KB). Load the image
as a matrix in python using matplotlib.pyplot.imread.

For k ∈ {1, 2, 4, 8, 16, 32, 64, 128}, compute the truncated svd, save
the resulting matrices in 16-bit floating precision using numpy.savez. Finally, reload the saved arrays and restore
the image as a 8-bit uint array. Plot the reconstructed images and compute the compression factor in each case.
(Either compare file sizes manually or compute it.)

3. Principal Component Analysis (10 points)

As in Tutorial 8, load the iris dataset via sklearn.datasets.load_iris and construct a 3:1 training-test
split via sklearn.model_selection.train_test_split; use 2020 as the random seed for part A and B.

A. [2p] Compute the principal components using only the training data. What is the transformation from
the old features to the new features?

B. [2p] Make a plot of the whole dataset, using the first two principal components. (from part 3A)

C. [6p] For k = 1, 2, 3 train two linear classifiers (you can use sklearn’s LogisticRegression): one on the
original data, and one on the embedded data. Compare their performance by computing the mean and standard
deviation of the test accuracy over 1000 independent runs for each classifier.

https://photojournal.jpl.nasa.gov/tiff/PIA18314.tif
https://photojournal.jpl.nasa.gov/tiff/PIA18314.tif

	
	[2p]
	[2p]

	
	

	
	[2p]
	[2p]
	[6p]


