
Machine Learning

Machine Learning
A. Supervised Learning: Linear Models & Fundamentals

A.1. Linear Regression

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 37

Machine Learning

Syllabus
Fri. 25.10. (1) 0. Introduction

A. Supervised Learning: Linear Models & Fundamentals
Fri. 1.11. (2) A.1 Linear Regression
Fri. 8.11. (3) A.2 Linear Classification
Fri. 15.11. (4) A.3 Regularization
Fri. 22.11. (5) A.4 High-dimensional Data

B. Supervised Learning: Nonlinear Models
Fri. 29.11. (6) B.1 Nearest-Neighbor Models
Fri. 6.12. (7) B.2 Neural Networks
Fri. 13.12. (8) B.3 Decision Trees
Fri. 20.12. (9) B.4 Support Vector Machines

— Christmas Break —
Fri. 10.1. (10) B.5 A First Look at Bayesian and Markov Networks

C. Unsupervised Learning
Fri. 17.1. (11) C.1 Clustering
Fri. 24.1. (12) C.2 Dimensionality Reduction
Fri. 31.1. (13) C.3 Frequent Pattern Mining
Fri. 7.2. (14) Q&A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 37

Machine Learning

Outline

1. Linear Regression via Normal Equations

2. Minimizing a Function via Gradient Descent

3. Learning Linear Regression Models via Gradient Descent

4. Case Weights

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 37

Machine Learning 1. Linear Regression via Normal Equations

Outline

1. Linear Regression via Normal Equations

2. Minimizing a Function via Gradient Descent

3. Learning Linear Regression Models via Gradient Descent

4. Case Weights

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 37

Machine Learning 1. Linear Regression via Normal Equations

The Simple Linear Regression Problem (Review)

Given

I a set Dtrain := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ R× R called
training data,

compute the parameters (β̂0, β̂1) of a linear regression function

ŷ(x) := β̂0 + β̂1x

s.t. for a set Dtest ⊆ R× R called test set the test error

err(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

(y − ŷ(x))2

is minimal.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 37

Note: Dtest has (i) to be from the same data generating process and (ii) not to be available
during training.

Machine Learning 1. Linear Regression via Normal Equations

The (Multiple) Linear Regression Problem

Given

I a set Dtrain := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ RM × R called
training data,

compute the parameters (β̂0, β̂1, . . . , β̂M) of a linear regression function

ŷ(x) := β̂0 + β̂1x1+ . . .+ β̂MxM

s.t. for a set Dtest ⊆ RM × R called test set the test error

err(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

(y − ŷ(x))2

is minimal.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 37

Note: Dtest has (i) to be from the same data generating process and (ii) not to be available
during training.

Machine Learning 1. Linear Regression via Normal Equations

Several predictors

Several predictor variables xn,1, xn,2, . . . , xn,M :

ŷn =β̂0 + β̂1xn,1 + β̂2xn,2 + · · · β̂Mxn,M

=β̂0 +
M∑

m=1

β̂mxn,m

with M + 1 parameters β̂0, β̂1, . . . , β̂M .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 37

Note: n ∈ 1:N denotes the sample/example/instance/case.

Machine Learning 1. Linear Regression via Normal Equations

Linear form

Several predictor variables xn,1, xn,2, . . . , xn,M :

ŷn =β̂0 +
M∑

m=1

β̂mxn,m

=〈β̂, xn〉 = β̂T xn

where

β̂ :=


β̂0
β̂1
...

β̂M

 , xn :=


1

xn,1
...

xn,M

 ,

Thus, the intercept is handled like any other parameter, for the artificial
constant predictor xn,0 ≡ 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 37

Machine Learning 1. Linear Regression via Normal Equations

Simultaneous equations for the whole dataset

For the whole dataset Dtrain := {(x1, y1), . . . , (xN , yN)}:

y ≈ ŷ := X β̂

where

y :=

 y1
...
yN

 , ŷ :=

 ŷ1
...
ŷN

 , X :=

 x1
...
xN

 =

 x1,1 x1,2 . . . x1,M
...

...
...

...
xN,1 xN,2 . . . xN,M



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 37

Machine Learning 1. Linear Regression via Normal Equations

Least squares estimates
Least squares estimates β̂ minimize

err(ŷ ,Dtrain) := RSS(β̂,Dtrain) :=
N∑

n=1

(yn − ŷn)2 = ||y − ŷ ||2 = ||y − X β̂||2

β̂ := arg min
β̂∈RM

||y − X β̂||2

The least squares estimates β̂ can be computed analytically via
normal equations

XTX β̂ = XT y

Proof: ||y − X β̂||2 = 〈y − X β̂, y − X β̂〉

∂(. . .)

∂β̂
= 2〈−X , y − X β̂〉 = −2(XT y − XTX β̂)

!
= 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 37

Machine Learning 1. Linear Regression via Normal Equations

Least squares estimates
Least squares estimates β̂ minimize

err(ŷ ,Dtrain) := RSS(β̂,Dtrain) :=
N∑

n=1

(yn − ŷn)2 = ||y − ŷ ||2 = ||y − X β̂||2

β̂ := arg min
β̂∈RM

||y − X β̂||2

The least squares estimates β̂ can be computed analytically via
normal equations

XTX β̂ = XT y

Proof: ||y − X β̂||2 = 〈y − X β̂, y − X β̂〉

∂(. . .)

∂β̂
= 2〈−X , y − X β̂〉 = −2(XT y − XTX β̂)

!
= 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 37

Machine Learning 1. Linear Regression via Normal Equations

How to compute least squares estimates β̂

Solve the M ×M system of linear equations

XTX β̂ = XT y

i.e., Ax = b (with A := XTX , b := XT y , x := β̂).

There are several numerical methods available:

1. Gaussian elimination
I favored for small examples computed manually (e.g., in exams)

2. Cholesky decomposition

3. QR decomposition
I favored in implementations (e.g., in software & labs)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 37

Machine Learning 1. Linear Regression via Normal Equations

Learn Linear Regression via Normal Equations

1 learn-linreg-NormEq(Dtrain := {(x1, y1), . . . , (xN , yN)}):

2 X := (x1, x2, . . . , xN)T

3 y := (y1, y2, . . . , yN)T

4 A := XTX

5 b := XT y

6 β̂ := solve-SLE(A, b)

7 return β̂

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 37

Note: SLE = simultaneous linear equations.

Machine Learning 1. Linear Regression via Normal Equations

Example

Given is the following data:

x1 x2 y

1 2 3
2 3 2
4 1 7
5 5 1

Predict a y value for x1 = 3, x2 = 4.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 37

Machine Learning 1. Linear Regression via Normal Equations

Example / Simple Regression Models for Comparison

ŷ =β̂0 + β̂1x1

=2.95 + 0.1x1
ŷ =β̂0 + β̂2x2

=6.943− 1.343x2

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

7

x1

y

●

●

●

data
model

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

7
x2

y

●

●

●

data
model

ŷ(x1 = 3) = 3.25

RSS = 20.65, RMSE = 4.02
ŷ(x2 = 4) = 1.571

RSS = 4.97, RMSE = 2.13

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 37

Machine Learning 1. Linear Regression via Normal Equations

Example

Now fit

ŷ =β̂0 + β̂1x1 + β̂2x2

to the data:

x1 x2 y

1 2 3
2 3 2
4 1 7
5 5 1

X =


1 1 2
1 2 3
1 4 1
1 5 5

 , y =


3
2
7
1


XTX =

 4 12 11
12 46 37
11 37 39

 , XT y =

 13
40
24


Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 37

Machine Learning 1. Linear Regression via Normal Equations

Example

 4 12 11 13
12 46 37 40
11 37 39 24

 ∼
 4 12 11 13

0 10 4 1
0 16 35 −47

 ∼
 4 12 11 13

0 10 4 1
0 0 143 −243



∼

 4 12 11 13
0 1430 0 1115
0 0 143 −243

 ∼
 286 0 0 1597

0 1430 0 1115
0 0 143 −243


i.e.,

β̂ =

 1597/286
1115/1430
−243/143

 ≈
 5.583

0.779
−1.699



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 37

Machine Learning 1. Linear Regression via Normal Equations

Example

x1
x2

y

x1
x2

y

−4

−2

0

2

4

6

8

10

−4

−2

0

2

4

6

8

10

ŷ(x1 = 3, x2 = 4) = 1.126

RSS = 0.0035, RMSE = 0.58

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 37

Machine Learning 1. Linear Regression via Normal Equations

Example / Visualization of Model Fit
To visually assess the model fit, a scatter plot

residuals ε̂ := y − ŷ vs. true values y

can be plotted:
●

●

●

●

1 2 3 4 5 6 7

−
0.

04
0.

00
0.

02

y

y
−

ŷ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 37

Machine Learning 1. Linear Regression via Normal Equations

Computational Complexity
I overall complexity of learning a linear regression model via normal

equations:

O(NM2 + M3)

I M × N,N ×M matrix multiplication XTX : O(NM2)

I solve system of M equations: O(M3)

I example runtimes:
(Intel i5-760 2.8 MHz, 2010, Python numpy)

M runtime [s]

100 0.002
200 0.004
400 0.022
800 0.086

1600 0.555
3200 6.275
6400 27.902

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Outline

1. Linear Regression via Normal Equations

2. Minimizing a Function via Gradient Descent

3. Learning Linear Regression Models via Gradient Descent

4. Case Weights

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Gradient Descent

Given a function f : RN → R, find x with minimal f (x).

Idea: start from a random x0 and
then improve step by step, i.e.,
choose xi+1 with

f (xi+1) ≤ f (xi)

−3 −2 −1 0 1 2 3

0
2

4
6

8

x

f(
x)

●

Choose the negative gradient −∇f (xi) := −∂f
∂x (xi) as direction for

descent, i.e.,
xi+1 − xi = −µi · ∇f (xi)

with a suitable step size µi > 0.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Gradient Descent

1 minimize-GD-fss(f : RN → R, x0 ∈ RN , µ ∈ R+, imax ∈ N, ε ∈ R+):
2 for i = 1, . . . , imax:
3 xi := xi−1 − µ · ∇f (xi−1)
4 if f (xi−1)− f (xi) < ε:
5 return xi
6 raise exception ‘‘ not converged in imax iterations’’

x0 start value

µ (fixed) step size (aka step length, learning rate)

imax maximal number of iterations

ε minimum stepwise improvement

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Example

f (x) := x2, ∇f (x) =
∂f

∂x
(x) = 2x , x0 := 2, µ := 0.25

Then we compute iteratively:

i xi
∂f
∂x (xi) xi+1

0 2 4 1
1 1 2 0.5
2 0.5 1 0.25

3 0.25
...

...
...

...
...

...

using

xi+1 = xi − µ · ∇f (xi) −3 −2 −1 0 1 2 3

0
2

4
6

8

x

f(
x)

● x0

● x1

● x2● x3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Step Size
Why do we need a step size? Can we set µ := 1?

The negative gradient gives a direction of descent only
in an infinitesimal neighborhood of xn.

Thus, the step size may be too large,
and the function value of the next point does not decrease.

−3 −2 −1 0 1 2 3

0
2

4
6

8

x

f(
x)

● x0● x1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Step Size

There are many different strategies to adapt the step size s.t.

1. the function value actually decreases and

2. the step size becomes not too small
(and thus convergence slow)

Backtracking linesearch:

µi := max{µ ∈{βj | j ∈ N0} |
f (xi − µ∇f (xi)) ≤ f (xi)− µα∇f (xi)

T∇f (xi) }

with α ∈ (0, 12), β ∈ (0, 1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Backtracking Line Search

1 stepsize-backtracking(f , x , α ∈ (0, 0.5), β ∈ (0, 1)):
2 µ := 1

3 while f (x − µ∇f (x)) > f (x)− αµ∇f (x)T∇f (x):
4 µ := βµ
5 return µ

x last position

α steepness

β stepsize reduction factor

Loop eventually terminates as for sufficient small µ:

f (x − µ∇f (x)) ≈ f (x)− µ∇f (x)T∇f (x) < f (x)− αµ∇f (x)T∇f (x)︸ ︷︷ ︸
≥0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Gradient Descent

1 minimize-GD(f : RN → R, x0 ∈ RN , µ, imax ∈ N, ε ∈ R+):
2 for i = 1, . . . , imax:
3 µi := µ(f , xi−1)
4 xi := xi−1 − µi · ∇f (xi−1)
5 if f (xi−1)− f (xi) < ε:
6 return xi
7 raise exception ‘‘ not converged in imax iterations’’

x0 start value

µ step size function, e.g., steplength-backtracking
(with fixed α, β).

imax maximal number of iterations

ε minimum stepwise improvement

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Bold Driver Step Size [Battiti, 1989]

A variant of backtracking with memory:

1 steplength-bolddriver(f : RN → R, x ∈ RN , d ∈ RN , µold, µ+, µ− ∈ (0, 1)):

2 µ := µoldµ+

3 while f (x)− f (x + µd) ≤ 0}:
4 µ = µµ−

5 return µ

µold last step size

µ+ step size increase factor, e.g., 1.1.

µ− step size decrease factor, e.g., 0.5.

d descent direction, e.g., d := −∇f (x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Simple Step Size Control in Machine Learning
I Backtracking and Bold Driver step sizes evaluate the objective

function (including the loss) several times, and thus often are too
costly and not used.

I But useful for debugging as they guarantee decrease in f .

I Constant step sizes µ ∈ (0, 1) are frequently used.
I If chosen (too) small, the learning algorithm becomes slow,

but usually still converges.

I The step size becomes a hyperparameter that has to be searched.

I Regimes of shrinking step sizes are used:

µi := µi−1γ, γ ∈ (0, 1) not too far from 1

I If the initial step size µ0 is too large, later iterations will fix it.

I If γ is too small, GD may get stuck before convergence.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

How Many Minima can a Function have?

I In general, a function f can have several different local minima
i.e., points x with ∂f

∂x (x) = 0.

I GD will find a random one
(with small step sizes, usually one close to the starting point;
local optimization method).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 37

Machine Learning 2. Minimizing a Function via Gradient Descent

Convexity

I A function f : RN → R is called convex if

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2), ∀x1, x2 ∈ RN , t ∈ [0, 1]

I for a convex function, all local minima have the same function value
(global minimum)

I 2nd-order criterion for convexity: A two-times differentiable
function is convex if its Hessian is positive semidefinite, i.e.,

xT
(

∂2f

∂xi∂xj

)
i=1,...,N,j=1,...,N

x ≥ 0 ∀x ∈ RN

I For any matrix A ∈ RN×M , the matrix ATA is positive semidefinite.

I Thus linear regression with RSS/L2/quadratic loss is convex and
GD will find a global minimum.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 37

Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Outline

1. Linear Regression via Normal Equations

2. Minimizing a Function via Gradient Descent

3. Learning Linear Regression Models via Gradient Descent

4. Case Weights

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 37

Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Sparse Predictors
Many problems have predictors x ∈ RM that are

I high-dimensional: M is large, and

I sparse: most xm are zero.

For example, text regression:

I task: predict the rating of a customer review.

I predictors: a text about a product — a sequence of words.
I can be represented as vector via bag of words:

xm encodes the frequency of word m in a given text.

I dimensions 30,000-60,000 for English texts

I in short texts as reviews with a couple of hundred words,
maximally a couple of hundred dimensions are non-zero.

I target: the customers rating of the product — a (real) number.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 37

Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Sparse Predictors — Dense Normal Equations
I Recall, the normal equations

XTX β̂ = XT y

have dimensions M ×M.

I Even if X is sparse, generally XTX will be rather dense.

(XTX)m,l = XT
.,mX.,l

I For text regression, (XTX)m,l will be non-zero for every pair of words
m, l that co-occurs in any text.

I Even worse, even if A := XTX is sparse, standard methods to solve
linear systems (such as Gaussian elimination, LR decomposition etc.)
do not take advantage.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 37

Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Learn Linear Regression via Loss Minimization

Alternatively to learning a linear regression model via solving the linear
normal equation system one can minimize the loss directly:

f (β̂) := β̂TXTX β̂ − 2yTX β̂ + yT y

= (y − X β̂)T (y − X β̂)

∂f

∂β̂
(β̂) = −2(XT y − XTX β̂)

= −2XT (y − X β̂)

When computing f and ∂f
∂β̂

,

I avoid computing (dense) XTX .

I always compute (sparse) X times a (dense) vector.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 37

Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Objective Function and Gradient as Sums over Instances

f (β̂) := (y − X β̂)T (y − X β̂)T

=
N∑

n=1

(yn − xTn β̂)2

=
N∑

n=1

ε2n, εn := yn − xTn β̂

∂f

∂β̂
(β̂) = −2XT (y − X β̂)

= −2
N∑

n=1

(yn − xTn β̂)xn

= −2
N∑

n=1

εnxn

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 37

Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Learn Linear Regression via Loss Minimization: GD

1 learn-linreg-GD(Dtrain := {(x1, y1), . . . , (xN , yN)}, µ, imax ∈ N, ε ∈ R+):

2 X := (x1, x2, . . . , xN)T

3 y := (y1, y2, . . . , yN)T

4 β̂0 := (0, . . . , 0)

5 β̂ := minimize-GD(f (β̂) := (y − X β̂)T (y − X β̂),

β̂0, µ, imax, ε)

6 return β̂

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 37

Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Computational Complexity

I via normal equations:

O(NM2 + M3)

I via gradient descent:

O(INMnz + IM)

I I number of iterations

I Mnz ≤ M average number of nonzero elements for an instance / in a
row of X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 37

Machine Learning 4. Case Weights

Outline

1. Linear Regression via Normal Equations

2. Minimizing a Function via Gradient Descent

3. Learning Linear Regression Models via Gradient Descent

4. Case Weights

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 37

Machine Learning 4. Case Weights

Cases of Different Importance

Sometimes different cases are of different importance, e.g., if their
measurements are of different accurracy or reliability.

Example: assume the left most point
is known to be measured with lower
reliability.

Thus, the model does not need to fit
to this point equally as well as it
needs to do to the other points.

I.e., residuals of this point should get
lower weight than the others.

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8
0

2
4

6
8

x

y

● data
model

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 37

Machine Learning 4. Case Weights

Case Weights

In such situations, each case (xn, yn) is assigned a case weight wn ≥ 0:

I the higher the weight, the more important the case.

I cases with weight 0 should be treated as if they have been discarded
from the data set.

Case weights can be managed as an additional pseudo-variable w in
implementations.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 37

Machine Learning 4. Case Weights

Weighted Least Squares Estimates
Formally, one tries to minimize the weighted residual sum of squares

N∑
n=1

wn(yn − ŷn)2 =||W
1
2 (y − ŷ)||2

with

W :=


w1 0

w2

. . .

0 wn



The same argument as for the unweighted case yields the
weighted least squares estimates

XTWX β̂ = XTWy

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 37

Machine Learning 4. Case Weights

Weighted Least Squares Estimates / Example
To downweight the left most point, we assign case weights as follows:

w x y

1 5.65 3.54
1 3.37 1.75
1 1.97 0.04
1 3.70 4.42
0.1 0.15 3.85
1 8.14 8.75
1 7.42 8.11
1 6.59 5.64
1 1.77 0.18
1 7.74 8.30

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

x

y

● data
model (w. weights)
model (w./o. weights)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36 / 37

Machine Learning 4. Case Weights

Summary
I For regression, linear models of type ŷ = xT β̂ can be used to predict

a quantitative y based on several (quantitative) x .
I A bias term can be modeled as additional predictor that is constant 1.

I The ordinary least squares estimates (OLS) are the parameters
with minimal residual sum of squares (RSS).

I OLS estimates can be computed by solving the normal equations
XTX β̂ = XT y as any system of linear equations via Gaussian
elimination.

I Alternatively, OLS estimates can be computed iteratively via
Gradient Descent.

I Especially for high-dimensional, sparse predictors GD is
advantageous as it never has to compute the large, dense XTX .

I Case weights can be handled seamlessly by both methods to model
different importance of cases.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 / 37

Machine Learning

Further Readings

I [James et al., 2013, chapter 3], [Murphy, 2012, chapter 7], [Hastie
et al., 2005, chapter 3].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

38 / 37

Machine Learning

References

Roberto Battiti. Accelerated backpropagation learning: Two optimization methods. Complex systems, 3(4):331–342, 1989.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining,
Inference and Prediction, volume 27. Springer, 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning. Springer, 2013.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

39 / 37

	1. Linear Regression via Normal Equations
	2. Minimizing a Function via Gradient Descent
	3. Learning Linear Regression Models via Gradient Descent
	4. Case Weights
	Appendix

