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Machine Learning
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— Christmas Break —
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C. Unsupervised Learning
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Machine Learning 1. The Classification Problem

The Classification Problem

Example: classifying iris plants
(Anderson 1935).

150 iris plants (50 of each species):
I 3 species:

setosa, versicolor, virginica

I length and width of sepals (in cm)

I length and width of petals (in cm)

Given the lengths and widths of
sepals and petals of an instance,
which iris species does it belong to?

iris setosa iris versicolor

iris virginica
[source: iris species database, http://www.badbear.com/signa]
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Machine Learning 1. The Classification Problem

The Classification Problem / Data

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.10 3.50 1.40 0.20 setosa
2 4.90 3.00 1.40 0.20 setosa
3 4.70 3.20 1.30 0.20 setosa
...

...
...

...
...

51 7.00 3.20 4.70 1.40 versicolor
52 6.40 3.20 4.50 1.50 versicolor
53 6.90 3.10 4.90 1.50 versicolor

...
...

...
...

...
101 6.30 3.30 6.00 2.50 virginica

...
...

...
...

...
150 5.90 3.00 5.10 1.80 virginica

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 49



Machine Learning 1. The Classification Problem

The Classification Problem
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Machine Learning 1. The Classification Problem

The Classification Problem
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Machine Learning 1. The Classification Problem

Binary Classification

Let us start simple and consider two classes only,
e.g., target space Y := {0, 1}.

Given

I a set Dtrain := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ RM × Y called
training data,

we want to estimate a model ŷ(x) s.t. for a set Dtest ⊆ RM × Y called
test set the test error (here: misclassification rate)

err(ŷ ;Dtest) := mcr(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

I (y 6= ŷ(x))

is minimal.
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Note: I (A) := 1 if statement A is true, I (A) := 0 otherwise (indicator function).
Dtest has (i) to be from the same data generating process and (ii) not to be available
during training.



Machine Learning 1. The Classification Problem

Binary Classification / Data

Species
Sepal.Length Sepal.Width Petal.Length Petal.Width setosa

1 5.10 3.50 1.40 0.20 1
2 4.90 3.00 1.40 0.20 1
3 4.70 3.20 1.30 0.20 1
...

...
...

...
...

51 7.00 3.20 4.70 1.40 0
52 6.40 3.20 4.50 1.50 0
53 6.90 3.10 4.90 1.50 0

...
...

...
...

...
101 6.30 3.30 6.00 2.50 0

...
...

...
...

...
150 5.90 3.00 5.10 1.80 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 49



Machine Learning 2. Logistic Regression
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Machine Learning 2. Logistic Regression

Binary Classification with Linear Regression
One idea could be to optimize the linear regression model

Y = 〈X , β〉+ ε

for RSS.

This has several problems
I It is not suited for predicting y as it can assume all kinds of

intermediate values.

I It is optimizing for the wrong loss.
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Machine Learning 2. Logistic Regression

Binary Classification with Linear Regression

Instead of predicting Y directly, we predict

p(Y = 1|X ; β) — the probability of Y being 1 knowing X .

But linear regression is also not suited for predicting probabilities,
as its predicted values are principally unbounded.

Use a trick and transform the unbounded target by a function
that forces it into the unit interval [0, 1]
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Machine Learning 2. Logistic Regression

Logistic Function

Logistic function:

logistic(x) :=
ex

1 + ex
=

1

1 + e−x

Basic properties:
I has values between 0 and 1,

I converges to 1 when
approaching +∞,

I converges to 0 when
approaching −∞,

I is smooth and symmetric at
(0, 0.5).
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Machine Learning 2. Logistic Regression

Logistic Regression Model

p(Y = 1 |X ; β) = logistic(〈X , β〉) + ε =
e
∑M

m=1 βmXm

1 + e
∑M

m=1 βmXm
+ ε

I observed targets are converted to probabilities 0, 1
I probability 1 for targets Y = 1,

probability 0 for targets Y = 0

I ε is a random variable called noise

I predicted targets are probabilities [0, 1]

ŷ(x ; β̂) := logistic(〈x , β̂〉) =
e
∑M

m=1 β̂mxm

1 + e
∑M

m=1 β̂mxm

I remember: a logistic regression model is a classification model
I despite its name
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Machine Learning 2. Logistic Regression

Loss Function
Misclassification rate

mcr(β̂;Dtest) := mcr(ŷ(.; β̂);Dtest)

=
1

|Dtest|
∑

(x ,y)∈Dtest

I (y 6= ŷ(x ; β̂))

=
1

|Dtest|
∑

(x ,y)∈Dtest

I (y 6= I (logistic(β̂T x) ≥ 0.5))

is unsuited as loss function for minimization as it is not continuous.

Use a continuous proxy loss instead, e.g., adhoc

`(ŷ ;Dtest)) =
1

|Dtest|
∑

(x ,y)∈Dtest

I (y = 0) logistic(β̂T x)

+ I (y = 1) (1− logistic(β̂T x))
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Machine Learning 2. Logistic Regression

Maximum Likelihood Estimator
As fit criterium, the likelihood is used.

As Y is binary, it has a Bernoulli distribution:

Y |X = Bernoulli(p(Y = 1 |X ))

Thus, the conditional likelihood function is:

Lcond
D (β̂) =

N∏
n=1

p(Y = yn |X = xn; β̂)

=
N∏

n=1

p(Y = 1 |X = xn; β̂)yn(1− p(Y = 1 |X = xn; β̂))1−yn
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Machine Learning 2. Logistic Regression

Estimating Model Parameters
The last step is to estimate the model parameters β̂.

This will be done by

I maximizing the conditional likelihood function Lcond
D

which is equivalent to

I maximizing the log likelihood log(Lcond
D )

This can be done with any optimization technique. We will have a closer
look at

I Gradient Ascent
I = Gradient Descent, but for maximization:

update direction is just the gradient.

I Newton Method
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 3. Logistic Regression via Gradient Ascent
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Machine Learning 3. Logistic Regression via Gradient Ascent

Gradient Ascent

1 maximize-GA(f : RN → R, x0 ∈ RN , µ, tmax ∈ N, ε ∈ R+):
2 for t := 1, . . . , tmax:

3 x (t) := x (t−1) + µ · ∂f∂x (x (t−1))

4 if f (x (t))− f (x (t−1)) < ε:

5 return x (t)

6 raise exception ”not converged in tmax iterations”

For maximizing function f instead of minimizing it
go to the positive direction of the gradient.
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Machine Learning 3. Logistic Regression via Gradient Ascent

Gradient Ascent for the Loglikelihood

log Lcond
D (β̂) =

N∑
n=1

yn log ŷn + (1− yn) log(1− ŷn)

=
N∑

n=1

yn log(
e〈xn,β̂〉

1 + e〈xn,β̂〉
) + (1− yn) log(1− e〈xn,β̂〉

1 + e〈xn,β̂〉
)

=
N∑

n=1

yn(〈xn, β̂〉 − log(1 + e〈xn,β̂〉)) + (1− yn) log(
1

1 + e〈xn,β̂〉
)

=
N∑

n=1

yn(〈xn, β̂〉 − log(1 + e〈xn,β̂〉)) + (1− yn)(− log(1 + e〈xn,β̂〉))

=
N∑

n=1

yn〈xn, β̂〉 − log(1 + e〈xn,β̂〉)
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Machine Learning 3. Logistic Regression via Gradient Ascent

Gradient Ascent for the Loglikelihood

log Lcond
D (β̂) =

N∑
n=1

yn〈xn, β̂〉 − log(1 + e〈xn,β̂〉)

∇β log Lcond
D =

∂ log Lcond
D (β̂)

∂β̂
=

N∑
n=1

ynxn −
1

1 + e〈xn,β̂〉
e〈xn,β̂〉xn

=
N∑

n=1

xn(yn − ŷn)

=XT (y − ŷ)

ŷ :=

 ŷ1
...
ŷN


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Machine Learning 3. Logistic Regression via Gradient Ascent

Gradient Ascent for the Loglikelihood

1 learn-logreg-GA(Dtrain := {(x1, y1), . . . , (xN , yN)}, µ, tmax ∈ N, ε ∈ R+):

2 ` := log Lcond
D (β̂) :=

∑N
n=1 yn〈xn, β̂〉 − log(1 + e〈xn,β̂〉)

3 β̂ := maximize-GA(`, 0M , µ, tmax, ε)

4 return β̂
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Machine Learning 3. Logistic Regression via Gradient Ascent

Gradient Ascent for the Loglikelihood

1 learn-logreg-GA(Dtrain := {(x1, y1), . . . , (xN , yN)}, µ, tmax ∈ N, ε ∈ R+):

2 X := (x1, x2, . . . , xN)T

3 y := (y1, y2, . . . , yN)T

4 β̂ := 0M

5 ` :=
∑N

n=1 yn〈xn, β̂〉 − log(1 + e〈xn,β̂〉)
6 for t = 1, . . . , tmax:

7 ŷ := (1/(1 + e−β̂
T xn)n∈1:N

8 β̂ := β̂ + µ · XT (y − ŷ)

9 `old := `

10 ` :=
∑N

n=1 yn〈xn, β̂〉 − log(1 + e〈xn,β̂〉)

11 if `− `old < ε:

12 return β̂
13

14 raise exception ”not converged in tmax iterations”
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Machine Learning 4. Logistic Regression via Newton
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Machine Learning 4. Logistic Regression via Newton

Newton Algorithm
Given a function f : RN → R, find x with minimal f (x).

The Newton algorithm is based on a quadratic Taylor expansion of f
around xt :

Ft(x) := f (xt) + 〈∂f
∂x

(xt), x − xt〉+
1

2
〈x − xt ,

∂2f

∂x∂xT
(xt)(x − xt)〉

and minimizes this approximation in each step, i.e.,

∂Ft
∂x

(xt+1)
!

= 0

with
∂Ft
∂x

(x) =
∂f

∂x
(xt) +

∂2f

∂x∂xT
(xt)(x − xt)

which leads to the Newton algorithm:

∂2f

∂x∂xT
(xt)(xt+1 − xt) = −∂f

∂x
(xt)
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Machine Learning 4. Logistic Regression via Newton

Newton Algorithm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 49



Machine Learning 4. Logistic Regression via Newton

Newton Algorithm
1 minimize-Newton(f : RN → R, x (0) ∈ RN , µ, tmax ∈ N, ε ∈ R+):
2 for t := 1, . . . , tmax:

3 g := ∇f (x (t−1))

4 H := ∇2f (x (t−1))

5 x (t) := x (t−1) − µH−1g

6 if f (x (t−1))− f (x (t)) < ε:

7 return x (t)

8 raise exception ”not converged in tmax iterations”

x (0) start value
µ (fixed) step length / learning rate

tmax maximal number of iterations
ε minimum stepwise improvement

∇f (x) ∈ RN : gradient, (∇f (x))n = ∂
∂xn

f (x)

∇2f (x) ∈ RN×N : Hessian matrix, ∇2f (x)n,m = ∂2f
∂xn∂xm

(x)
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21 / 49



Machine Learning 4. Logistic Regression via Newton

Newton Algorithm for the Loglikelihood

∂ log Lcond
D (β̂)

∂β̂
=XT (y − ŷ)

∂2 log Lcond
D (β̂)

∂β̂∂β̂T
=− XTWX

with
W := diag(ŷ � (1− ŷ))

Update rule for the Logistic Regression with Newton optimization:

β̂(t) := β̂(t−1) + µ(XTWX)−1XT (y − ŷ)
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Machine Learning 4. Logistic Regression via Newton

Learning Logistic Regression via Newton

1 learn-logreg-Newton(Dtrain := {(x1, y1), . . . , (xN , yN)}, µ, tmax ∈ N, ε ∈ R+):

2 ` := − log Lcond
D (β̂) :=

∑N
n=1 yn〈xn, β̂〉 − log(1 + e〈xn,β̂〉)

3 β̂ := minimize-Newton(`, 0M , µ, tmax, ε)

4 return β̂
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Machine Learning 4. Logistic Regression via Newton

Newton Algorithm for the Loglikelihood

x1 x2 y

1 1 +
3 2 +
2 2 −
0 3 −

, X :=


1 1 1
1 3 2
1 2 2
1 0 3

 , y :=


1
1
0
0

 , β̂(0) :=

 0
0
0

 , µ = 1

ŷ (0) =


0.5
0.5
0.5
0.5

 , W (0) = diag


0.25
0.25
0.25
0.25

 , XT (y − ŷ) =

 0
1
−1



(
XTW (0)X

)−1
=

 14.55 −2.22 −5.11
−2.22 0.88 0.44
−5.11 0.44 2.22

 , β̂(1) =

 2.88
0.44
−1.77


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Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models

To visualize a logistic regression model, we can plot the decision
boundary

ŷ(X ) = p̂(Y = 1 |X ) =
1

2

and more detailed some level curves

ŷ(X ) = p̂(Y = 1 |X ) = p0

e.g., for p0 = 0.25 and p0 = 0.75:

〈β̂,X 〉 = log(
p0

1− p0
)

For logistic regression: decision boundary and level curves are straight
lines!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models (t = 1)

x1

x2

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 49



Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models (t = 2)
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Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models (t = 3)
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Machine Learning 4. Logistic Regression via Newton

Visualization Logistic Regression Models (t = 4)
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Machine Learning 5. Multi-category Targets

Outline

1. The Classification Problem

2. Logistic Regression

3. Logistic Regression via Gradient Ascent

4. Logistic Regression via Newton

5. Multi-category Targets

6. Linear Discriminant Analysis
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Machine Learning 5. Multi-category Targets

Binary vs. Multi-category Targets

Binary Targets / Binary Classification:
prediction of a nominal target variable with 2 levels/values.

Example: spam vs. non-spam.

Multi-category Targets / Multi-class Targets / Polychotomous
Classification:
prediction of a nominal target variable with more than 2 levels/values.

Example: three iris species; 10 digits; 26 letters etc.
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Machine Learning 5. Multi-category Targets

Multi-class Targets as Multivariate Targets

I multivariate regression:

ŷ(x) = Bx + b, B ∈ RM×T , b ∈ RT , ŷ , ŷ(x) ∈ RT

I can be learnt via gradient descent the same way as univariate regression
I equivalent to T independent univariate regressions

I Multi-class Logistic Regression

ŷ(x) = softmax(Bx + b), B ∈ RM×T , b ∈ RT , ŷ , ŷ(x) ∈ RT

softmax(z) :=

(
ezt∑T

t′=1 e
zt′

)
t=1:T

I can be learnt via gradient ascent the same way as univ. log. reg.
I not equivalent to T independent logistic regressions,

but different univariate targets learnt jointly.
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Note: Multi-class Logistic Regression is also called Multinomial Logistic, Maximum
Entropy Classifier or Softmax Regression.



Machine Learning 5. Multi-category Targets

Compound vs. Monolithic Classifiers

Compound models
I built from binary submodels,

I different types of compound models employ different sets of submodels:
I 1-vs-rest (aka 1-vs-all)
I 1-vs-last
I 1-vs-1 (Dietterich and Bakiri 1995; aka pairwise classification)
I DAG

I using error-correcting codes to combine component models.

I also ensembles of compound models are used
(Frank and Kramer 2004).

Monolithic models (aka ”‘one machine”’ (Rifkin and Klautau 2004))
I trying to solve the multi-class target problem intrinsically

I examples: decision trees, special SVMs
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Machine Learning 5. Multi-category Targets

Types of Compound Models

1-vs-rest: one binary classifier per class:

fy : X → [0, 1], y ∈ Y

f (x) := (
f1(x)∑

y∈Y fy (x)
, . . . ,

fk(x)∑
y∈Y fy (x)

)

1-vs-last: one binary classifier per class (but last yk):

fy : X → [0, 1], y ∈ Y , y 6= yk

f (x) := (
f1(x)

1 +
∑

y∈Y fy (x)
, . . . ,

fk−1(x)

1 +
∑

y∈Y fy (x)
,

1

1 +
∑

y∈Y fy (x)
)
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Machine Learning 5. Multi-category Targets

Polychotomous Discrimination, k target categories

1-vs-rest construction:

class 1

class 2

class 3

class 4

class 1

class 2

class 3

class 4

class 2

class 3

class 4

class 1

2−vs−rest

...

3−vs−rest

...

1−vs−rest

...

...
k classifiers trained on N cases

kN cases in total

1-vs-last construction:

class 2

class 1

class k class k class k

class k−1

2−vs−k1−vs−k (k−1)−vs−k...

k − 1 classifiers trained on approx. 2
N/k on average.

N + (k − 2)Nk cases in total
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Machine Learning 5. Multi-category Targets

Example / Iris data / Logistic Regression
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Machine Learning 5. Multi-category Targets

Example / Iris data / Logistic Regression
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Machine Learning 6. Linear Discriminant Analysis

Outline

1. The Classification Problem

2. Logistic Regression

3. Logistic Regression via Gradient Ascent

4. Logistic Regression via Newton

5. Multi-category Targets

6. Linear Discriminant Analysis
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Machine Learning 6. Linear Discriminant Analysis

Assumptions
In discriminant analysis, it is assumed that

I cases of a each class k are generated according to some probabilities

πk = p(Y = k)

and

I its predictor variables are generated by a class-specific multivariate
normal distribution

X | Y = k ∼ N (X ∈ RM | µk ,Σk)

i.e.

pk(x) :=
1

(2π)
M
2 |Σk |

1
2

e−
1
2
〈x−µk ,Σ−1

k (x−µk )〉

µk ∈ RM ,Σk ∈ RM×M
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Machine Learning 6. Linear Discriminant Analysis

Decision Rule
Discriminant analysis predicts as follows:

Ŷ | X = x := arg max
k

πkpk(x) = arg max
k

δk(x)

with the discriminant functions

δk(x) := −1

2
log |Σk | −

1

2
〈x − µk ,Σ−1

k (x − µk)〉+ log πk

Here,
〈x − µk ,Σ−1

k (x − µk)〉
is called the squared Mahalanobis distance of x and µk .

Thus, discriminant analysis can be described as prototype method, where
I each class k is represented by a prototype µk and

I cases are assigned to the class of the nearest prototype.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

38 / 49



Machine Learning 6. Linear Discriminant Analysis

Maximum Likelihood Parameter Estimates
The maximum likelihood parameter estimates are as follows:

n̂k :=
N∑

n=1

I (yn = k), with I (x = y) :=

{
1, if x = y
0, else

π̂k :=
n̂k
n

µ̂k :=
1

n̂k

∑
n:yn=k

xn

Σ̂k :=
1

n̂k

∑
n:yn=k

(xn − µ̂k)(xn − µ̂k)T
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Machine Learning 6. Linear Discriminant Analysis

QDA vs. LDA
In the general case, decision boundaries are quadratic due to the quadratic
occurrence of x in the Mahalanobis distance. This is called quadratic
discriminant analysis (QDA).

If we assume that all classes share the same covariance matrix, i.e.,

Σk = Σk ′ ∀k, k ′

then this quadratic term is canceled and the decision boundaries become
linear. This model is called linear discriminant analysis (LDA).

The maximum likelihood estimator for the common covariance matrix in
LDA is

Σ̂ :=
∑
k

n̂k
n

Σ̂k
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Machine Learning 6. Linear Discriminant Analysis

Example / Iris data / LDA
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Machine Learning 6. Linear Discriminant Analysis

Example / Iris data / QDA
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Machine Learning 6. Linear Discriminant Analysis

Example / Iris data / LDA
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Machine Learning 6. Linear Discriminant Analysis

Example / Iris data / QDA
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Machine Learning 6. Linear Discriminant Analysis

LDA coordinates
The variance matrix estimated by LDA can be used to linearly transform
the data s.t. the Mahalanobis distance

d(x , y) =

√
〈x − y , Σ̂−1(x − y)〉

becomes the standard Euclidean distance in the transformed coordinates

d(x ′, y ′) =
√
〈x ′ − y ′, x ′ − y ′〉 = ‖x ′ − y ′‖2

This is accomplished by the singular value decomposition (SVD) of Σ̂

Σ̂ = UDUT

with
I an orthonormal matrix U (i.e., UT = U−1) and

I a diagonal matrix D and setting

x ′ := D−
1
2UT x
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Machine Learning 6. Linear Discriminant Analysis

Example / Iris data / LDA coordinates
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Machine Learning 6. Linear Discriminant Analysis

LDA vs. Logistic Regression
LDA and logistic regression use the same underlying linear model.

For LDA:

log(
P(Y = 1|X = x)

P(Y = 0|X = x)
)

= log(
π1

π0
)− 1

2
〈µ0 + µ1,Σ

−1(µ1 − µ0)〉+ 〈x ,Σ−1(µ1 − µ0)〉

= α0 + 〈α, x〉

For logistic regression by definition we have:

log(
P(Y = 1|X = x)

P(Y = 0|X = x)
) =β0 + 〈β, x〉
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Machine Learning 6. Linear Discriminant Analysis

LDA vs. Logistic Regression
Both models differ in the way they estimate the parameters.

LDA maximizes the complete likelihood:∏
n

p(xn, yn) =
∏
n

p(xn | yn)︸ ︷︷ ︸
∏
n

p(yn)︸ ︷︷ ︸
normal pk categorical πk

While logistic regression maximizes the conditional likelihood only:∏
n

p(xn, yn) =
∏
n

p(yn | xn)︸ ︷︷ ︸
∏
n

f (xn)︸ ︷︷ ︸
logistic ignored
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Machine Learning 6. Linear Discriminant Analysis

Summary
I For classification, logistic regression models of type Y = e〈X,β〉

1+e〈X,β〉
+ ε can

be used to predict a binary Y based on several (quantitative) X .

I The maximum likelihood estimates (MLE) can be computed using
I Gradient Ascent or
I Newton’s algorithm on the loglikelihood.

I Another simple classification model is linear discriminant analysis (LDA)
that assumes that the cases of each class have been generated by a
multivariate normal distribution with

I class-specific means µk (the class prototype) and
I a common covariance matrix Σ.

I The maximum likelihood parameter estimates π̂k , µ̂k , Σ̂ for LDA are just
the sample estimates.

I Logistic regression and LDA share the same underlying linear model, but
I logistic regression optimizes the conditional likelihood,
I LDA the complete likelihood.
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Further Readings

I [James et al., 2013, chapter 3], [Murphy, 2012, chapter 7], [Hastie
et al., 2005, chapter 3].
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