Machine Learning

A. Supervised Learning: Linear Models \& Fundamentals A.3. Regularization

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Fri. 25.10.
(1) 0 . Introduction
A. Supervised Learning: Linear Models \& Fundamentals

Fri. 1.11. (2) A. 1 Linear Regression
Fri. 8.11.
(3) A. 2 Linear Classification

Fri. 15.11.
(4) A. 3 Regularization

Fri. 22.11.
(5) A. 4 High-dimensional Data
B. Supervised Learning: Nonlinear Models

Fri. 29.11. (6) B. 1 Nearest-Neighbor Models
Fri. 6.12. (7) B. 2 Neural Networks
Fri. 13.12. (8) B. 3 Decision Trees
Fri. 20.12. (9) B. 4 Support Vector Machines

- Christmas Break -

Fri. 10.1. (10) B. 5 A First Look at Bayesian and Markov Networks
C. Unsupervised Learning

Fri. 17.1. (11) C. 1 Clustering
Fri. 24.1. (12) C. 2 Dimensionality Reduction
Fri. 31.1. (13) C. 3 Frequent Pattern Mining
Fri. 7.2. (14) Q\&A

Outline

1. The Problem of Overfitting
2. Model Selection
3. Regularization
4. Hyperparameter Optimization

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization

Fitting of models

Underfitting/Overfitting

- Underfitting:
- the model is not complex enough to explain the data well.
- results in poor predictive performance.
- Overfitting:
- the model is too complex, it describes the
- noise, inherent random variations of the data generating process, instead of the
- signal, the underlying relationship between target and predictors.
- results in poor predictive performance as well.
- Overfitting is easy: given N points $\left(x_{n}, y_{n}\right)$ without repeated measurements (i.e. $x_{n} \neq x_{m}, n \neq m$), there exists a polynomial of degree $N-1$ with RSS equal to 0 .

$$
\hat{y}(x):=\sum_{n=1}^{N} y_{n} \prod_{\substack{m=1 \\ m \neq n}}^{N} \frac{x-x_{m}}{x_{n}-x_{m}}
$$

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization

Losses and Fit Measures

semantics goal	loss the smaller, the better minimize	fit/quality measure the larger, the better maximize				
regression	$\begin{aligned} & \operatorname{RSS}(y, \hat{y}):=\\|y-\hat{y}\\|_{2}^{2} \\ & :=\sum_{n=1}^{N}\left(y_{n}-\hat{y}_{n}\right)^{2} \\ & \operatorname{L2}(y, \hat{y}):=\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\hat{y}_{n}\right)^{2} \\ & \operatorname{RMSE}(y, \hat{y}):=\left(\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\hat{y}_{n}\right)^{2}\right)^{\frac{1}{2}} \\ & \operatorname{MAE}(y, \hat{y}):=\frac{1}{N}\\|y-\hat{y}\\|_{1} \\ & :=\frac{1}{N} \sum_{n=1}^{N}\left\|y_{n}-\hat{y}_{n}\right\| \end{aligned}$	$\begin{aligned} & \log L_{\mathcal{N}}(y, \hat{y}) \\ & :=\sum_{n=1}^{N}-\frac{1}{2 \sigma_{y}^{2}}\left(y_{n}-\hat{y}_{n}\right)^{2} \end{aligned}$				
classification	$\begin{aligned} & \operatorname{MR}(y, \hat{y}) \\ & :=\sum_{n=1}^{N} \mathbb{I}\left(y_{n} \neq \hat{y}_{n}\right) \end{aligned}$	$\begin{aligned} & \operatorname{ACC}(y, \hat{y}) \\ & :=\frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}=\hat{y}_{n}\right) \\ & \log L_{\text {binomial }}(y, \hat{y}) \\ & :=\sum_{n=1}^{N} \hat{y}_{n} \mathbb{I}\left(y_{n}=1\right) \\ & \quad+\left(1-\hat{y}_{n}\right) \mathbb{I}\left(y_{n}=0\right) \end{aligned}$				

Model Selection Measures

- Model selection:
- given a set of models indexed by p, one model for each value of p

$$
\hat{y}_{p}(x)=\sum_{m=0}^{p-1} \hat{\beta}_{m} x_{m}
$$

- make a choice which model describes the data best.
- If we just look at losses / fit measures such as RSS, then the larger p, the better the fit or equivalently the larger p, the lower the loss
as the model with p parameters can be reparametrized in a model with $p^{\prime}>p$ parameters by setting

$$
\hat{\beta}_{m}^{\prime}=\left\{\begin{array}{cl}
\hat{\beta}_{m}, & \text { for } m \leq p \\
0, & \text { for } m>p
\end{array}\right.
$$

Model Selection Measures

- One uses model selection measures of type

$$
\text { model selection measure }=\text { fit }- \text { complexity } \quad(\max !)
$$

or equivalently

$$
\text { model selection measure }=\text { loss }+ \text { complexity } \quad(\min !)
$$

- The smaller the loss (= lack of fit), the better the model.
- The smaller the complexity, the simpler and thus better the model.
- The model selection measure tries to find a trade-off between
- fit/loss and
- complexity.

Model Selection Measures

Akaike Information Criterion (AIC): (maximize)

$$
\text { AIC }:=\log L-p
$$

or (minimize)

$$
\text { AIC }:=-2 \log L+2 p
$$

Bayes Information Criterion (BIC) / Bayes-Schwarz Information Criterion: (maximize)

$$
\mathrm{BIC}:=\log L-\frac{p}{2} \log N
$$

where L denotes the likelihood
p the number of parameters
N the number of samples

Example: Predicting Murder Rate

sociographic data of the 50 US states in 1977:
x_{A} land area in square miles
x_{F} mean number of days with minimum temperature below freezing (1931-1960) in capital or large city
x_{H} percent high-school graduates (1970).
x_{l} illiteracy (percent of population, 1970),
x_{J} income (per capita, 1974),
x_{L} life expectancy (in years, 1969-71),
x_{P} population (July 1, 1975)
y_{M} murder rate per 100,000 population
 (1976)

$$
y_{M}=\beta_{0}+\beta_{A} x_{A}+\beta_{F} x_{F}+\beta_{H} x_{H}+\beta_{I} x_{I}+\beta_{J} x_{J}+\beta_{L} x_{L}+\beta_{P} x_{P}
$$

Variable Backward Selection

\{ A, F, H, I, J, L, P \} AIC $=63.01$

Variable Backward Selection

Variable Backward Selection

Variable Backward Selection

X removed variable

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization

Shrinkage

- Model selection operates by

1. fitting model instances for a set of models with varying complexity
2. picking the "best one" in hindsight,

- Variable Selection
- = model selection applied to models with different predictor subsets
- for models \hat{y} that factor through a linear combination of the predictors,

$$
\hat{y}(x ; \hat{\beta})=f\left(\sum_{m=1}^{M} \hat{\beta}_{m} x_{m}\right) \quad \text { for a suitable } f
$$

- dropping a variable x_{m} from the model is equivalent to
- forcing its model parameter $\hat{\beta}_{m}$ to be 0 .

Note: "Fitting a model instance" = "Learning model parameters", for models having parameters such as linear regression, logistic regression etc.

Shrinkage

- Variable Selection
- forcing its model parameter $\hat{\beta}_{m}$ to be 0 .
- Shrinkage follows a similar idea:
- smaller parameters mean a simpler hypothesis/less complex model.
- hence, small parameters should be prefered in general.
- a term is added to the objective function to
- favor small parameters or equivalently
- penalize large parameters or
- shrink them towards 0
instead of forcing them to be 0 .

Shrinkage / Regularization Penalties

There are various types of shrinkage techniques for different problem settings.

L1/Lasso Regularization: $\lambda \sum_{m=1}^{M}\left|\hat{\beta}_{m}\right|=\lambda\|\hat{\beta}\|_{1}$
L2/Tikhonov Regularization: $\lambda \sum_{m=1}^{M} \hat{\beta}_{m}^{2}=\lambda\|\hat{\beta}\|_{2}^{2}$
Elastic Net: $\lambda_{1}\|\hat{\beta}\|_{1}+\lambda_{2}\|\hat{\beta}\|_{2}^{2}$

Ridge Regression

Ridge regression is a combination of

$$
\underbrace{f(\hat{\beta} ; \lambda, \mathcal{D})}:=\underbrace{\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\hat{y}_{n}\left(x_{n} ; \hat{\beta}\right)\right)^{2}}+\lambda \underbrace{\sum_{m=1}^{M} \hat{\beta}_{m}^{2}}
$$

objective

$$
=\mathrm{L} 2 \text { loss } \quad+
$$

$\lambda \mathrm{L} 2$ regularization

Learning Ridge Regression (Closed Form)

Ridge regression: minimize

$$
\begin{array}{r}
f(\hat{\beta} ; \lambda, \mathcal{D})=\mathrm{L} 2(\hat{\beta})+\lambda \sum_{m=1}^{M} \hat{\beta}_{m}^{2}=\frac{1}{N}\langle\mathbf{y}-\mathbf{X} \hat{\beta}, \mathbf{y}-\mathbf{X} \hat{\beta}\rangle+\lambda\langle\hat{\beta}, \hat{\beta}\rangle \\
\Rightarrow \hat{\beta}=\left(\frac{1}{N} \mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}, \quad I:=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
\end{array}
$$

with $\lambda \geq 0$ a complexity hyperparameter / regularization weight.
Beware: ridge regression parameter estimates are not equivariant under scaling of the predictors
\rightsquigarrow data should be normalized before parameter estimation:

$$
x_{n, m}^{\prime}:=\frac{x_{n, m}-\bar{x}_{., m}}{\hat{\sigma}\left(x_{., m}\right)}
$$

Learning Ridge Regression (Gradient Descent)

learn-ridgereg-GD $\left(\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}, \lambda, \mu, i_{\max } \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right):$

$$
\begin{aligned}
& X:=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T} \\
& y:=\left(y_{1}, y_{2}, \ldots, y_{N}\right)^{T} \\
& \hat{\beta}_{0}:=(0, \ldots, 0) \\
& \hat{\beta}:=\operatorname{minimize-GD}\left(\begin{array}{l}
f(\hat{\beta}):=\frac{1}{N}(y-X \hat{\beta})^{T}(y-X \hat{\beta})+\lambda \hat{\beta}^{T} \hat{\beta}, \\
\left.\hat{\beta}_{0}, \mu, i_{\max }, \epsilon\right)
\end{array}\right.
\end{aligned}
$$

6 return $\hat{\beta}$

Learning Ridge Regression (Gradient Descent; elementary operations)

learn-ridgereg-GD $\left(\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}, \lambda, \mu, i_{\max } \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right)$:

$$
\begin{aligned}
& X:=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T} \\
& y:=\left(y_{1}, y_{2}, \ldots, y_{N}\right)^{T} \\
& \hat{\beta}:=0_{M} \\
& \ell:=\frac{1}{N}\|y-X \hat{\beta}\|^{2}
\end{aligned}
$$

$$
\text { for } t=1, \ldots, i_{\max } \text { : }
$$

$$
\hat{\beta}:=\hat{\beta}-\mu\left(-\frac{2}{N} \cdot X^{T}(y-X \hat{\beta})+2 \lambda \hat{\beta}\right)
$$

$$
\ell^{\text {old }}:=\ell
$$

$$
\ell:=\frac{1}{N}\|y-X \hat{\beta}\|^{2}
$$

$$
\text { if } \ell-\ell^{\text {old }}<\epsilon \text { : }
$$

$$
\text { return } \hat{\beta}
$$

raise exception "not converged in $i_{\text {max }}$ iterations"

L2-Regularized Update Rule

$$
\hat{\beta}^{(t)}:=(1-2 \mu \lambda) \hat{\beta}^{(t-1)}+\frac{2 \mu}{n!} X^{T}\left(y-X \hat{\beta}^{(t-1)}\right)
$$

Tikhonov Regularization Derivation (1/2)

Treat the true parameters θ_{j} as random variables Θ_{j} with the following distribution (prior):

$$
\Theta_{j} \sim \mathcal{N}\left(0, \sigma_{\Theta}\right), \quad j=1, \ldots, p
$$

Then the joint likelihood of the data and the parameters is

$$
L_{\mathcal{D}, \Theta}(\theta):=\left(\prod_{n=1}^{N} p\left(x_{n}, y_{n} \mid \theta\right)\right) \prod_{j=1}^{p} p\left(\Theta_{j}=\theta_{j}\right)
$$

and the conditional joint log likelihood of the data and the parameters

$$
\log L_{\mathcal{D}, \Theta}^{\text {cond }}(\theta):=\left(\sum_{n=1}^{N} \log p\left(y_{n} \mid x_{n}, \theta\right)\right)+\sum_{j=1}^{p} \log p\left(\Theta_{j}=\theta_{j}\right)
$$

and

$$
\log p\left(\Theta_{j}=\theta_{j}\right)=\log \frac{1}{\sqrt{2 \pi} \sigma_{\Theta}} e^{-\frac{\theta_{j}^{2}}{2 \sigma_{\Theta}^{2}}}=-\log \left(\sqrt{2 \pi} \sigma_{\Theta}\right)-\frac{\theta_{j}^{2}}{2 \sigma_{\Theta}^{2}}
$$

Tikhonov Regularization Derivation (2/2)

Dropping the terms that do not depend on θ_{j} yields:

$$
\begin{aligned}
\log L_{\mathcal{D}, \Theta}^{\text {cond }}(\theta) & :=\left(\sum_{n=1}^{N} \log p\left(y_{n} \mid x_{n}, \theta\right)\right)+\sum_{j=1}^{p} \log p\left(\Theta_{j}=\theta_{j}\right) \\
& \propto\left(\sum_{n=1}^{N} \log p\left(y_{n} \mid x_{n}, \theta\right)\right)-\frac{1}{2 \sigma_{\Theta}^{2}} \sum_{j=1}^{p} \theta_{j}^{2}
\end{aligned}
$$

This also gives a semantics to the complexity / regularization weight λ :

$$
\lambda=\frac{1}{2 \sigma_{\Theta}^{2}}
$$

but σ_{Θ}^{2} is unknown. (We will see methods to estimate λ soon.)
The parameters θ that maximize the joint likelihood of

- the data and
- the parameters
are called Maximum Aposteriori Estimators (MAP estimators).

L2-Regularized Logistic Regression (Gradient Descent)

learn-reglogreg-GA $\left(\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}, \lambda, \mu, t_{\text {max }} \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right)$:
$\ell:=\frac{1}{N} \log L_{\mathcal{D}}^{\text {cond }}(\hat{\beta}):=\frac{1}{N} \sum_{n=1}^{N} y_{n}\left\langle x_{n}, \hat{\beta}\right\rangle-\log \left(1+e^{\left(x_{n}, \hat{\beta}\right\rangle}\right)+\lambda \hat{\beta}^{\top} \hat{\beta}$
$\hat{\beta}:=$ maximize-GA $\left(\ell, 0_{M}, \mu, t_{\text {max }}, \epsilon\right)$
return $\hat{\beta}$

L2-Regularized Logistic Regression (Gradient Descent)

learn-logreg-GA $\left(\mathcal{D}^{\text {train }}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}, \lambda, \mu, t_{\max } \in \mathbb{N}, \epsilon \in \mathbb{R}^{+}\right)$:

$$
\begin{aligned}
& X:=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T} \\
& y:=\left(y_{1}, y_{2}, \ldots, y_{N}\right)^{T} \\
& \hat{\beta}:=0_{M} \\
& \ell:=\frac{1}{N} \sum_{n=1}^{N} y_{n}\left\langle x_{n}, \hat{\beta}\right\rangle-\log \left(1+e^{\left\langle x_{n}, \hat{\beta}\right\rangle}\right) \\
& \text { for } t=1, \ldots, t_{\text {max }}: \\
& \hat{y}:=\left(1 /\left(1+e^{-\hat{\beta}^{T} x_{n}}\right)_{n \in 1: N}\right. \\
& \hat{\beta}:=\hat{\beta}+\mu \cdot\left(\frac{1}{N} X^{T}(y-\hat{y})-2 \lambda \hat{\beta}\right) \\
& \quad \ell^{\text {old }}:=\ell \\
& \quad \ell:=\frac{1}{N} \sum_{n=1}^{N} y_{n}\left\langle x_{n}, \hat{\beta}\right\rangle-\log \left(1+e^{\left\langle x_{n}, \hat{\beta}\right\rangle}\right) \\
& \quad \text { if } \ell-\ell^{\text {old }}<\epsilon: \\
& \quad \text { return } \hat{\beta}
\end{aligned}
$$

raise exception "not converged in $t_{\text {max }}$ iterations"

L2-Regularized Logistic Regression (Newton)

Newton update rule:

$$
\begin{aligned}
\hat{\beta}^{(t+1)} & :=\hat{\beta}^{(t)}+\mu\left(H^{(t)}\right)^{-1} \nabla_{\hat{\beta}}\left(L_{\mathcal{D}}^{\text {cond }}\right)^{(t)} \\
\left(\nabla_{\hat{\beta}} L_{\mathcal{D}}^{\text {cond }}\right)^{(t)} & =\left(\begin{array}{l}
\sum_{n=1}^{N}\left(y_{n}-\hat{y}_{n}^{(t)}\right) \\
\sum_{n=1}^{N} x_{n, 1}\left(y_{n}-\hat{y}_{n}^{(t)}\right)-2 \lambda \hat{\beta}_{1}^{(t)} \\
\vdots \\
\sum_{n=1}^{N} x_{n, M}\left(y_{n}-\hat{y}_{n}^{(t)}\right)-2 \lambda \hat{\beta}_{M}^{(t)}
\end{array}\right) \\
H^{(t)} & =\sum_{n=1}^{N}-\hat{y}_{n}^{(t)}\left(1-\hat{y}_{n}^{(t)}\right) x_{n} x_{n}^{T}-2 \lambda I
\end{aligned}
$$

Outline

1. The Problem of Overfitting

2. Model Selection

3. Regularization

4. Hyperparameter Optimization

What is Hyperparameter Optimization?

- Most models and learning algorithms have parameters that cannot be learned by minimizing the objective function, because either
- the objective function would be minimized for a trivial value, e.g., $\lambda=0$, or
- the parameters affect the learning algorithm, e.g., learning rate.
- These parameters are called hyperparameters λ and they parametrize a learning algorithm \mathcal{A}_{λ}.
- choose suitable hyperparameters λ
- use \mathcal{A}_{λ} to map the training data $\mathcal{D}_{\text {train }}$ to a prediction function \hat{y} by minimizing some loss $\mathcal{L}(\mathcal{D}, \hat{y})$ over the training data.

What is Hyperparameter Optimization?

- Identifying good values for the hyperparameters λ is called hyperparameter optimization.
- hyperparameter optimization is a second level optimization

$$
\underset{\lambda \in \Lambda}{\arg \min } \mathcal{L}\left(\mathcal{D}_{\text {valid }}, \mathcal{A}_{\lambda}\left(\mathcal{D}_{\text {train }}\right)\right)=\underset{\lambda \in \Lambda}{\arg \min } \Psi(\lambda)
$$

where

- Ψ is the hyperparameter response function and
- $\mathcal{D}_{\text {valid }}$ a validation data (aka calibration data and holdout data).

Why Hyperparameter Optimization

- So far only model parameters were optimized.
- Values for hyperparameters (such as regularization λ and learning rate μ) came "out of the blue".
- Hyperparameters can have a big impact on the prediction quality.

Grid Search

- Assume we have Q hyperparameters $\lambda_{1}, \ldots, \lambda_{Q}$
- Choose for each hyperparameter λ_{q} a set of values Λ_{q}.
- $\Lambda:=\prod_{q=1}^{Q} \Lambda_{q}$ is then a grid of hyperparameters.
- Choose the hyperparameter combination $\lambda \in \Lambda$ with best performance on $\mathcal{D}_{\text {valid. }}$.

Random Search

- Instead of trying hyperparameter combinations on a grid, try random hyperparameter combinations λ for Λ (within a reasonable range).
- Usually slightly better results than grid search.

What is the Validation Data?

- Whenever a learning process depends on a hyperparameter, the hyperparameter can be estimated by picking the value with the lowest error.
- If this is done on test data, one actually uses test data in the training process ("train on test"), thereby lessen its usefulness for estimating the test error.
- Therefore, one splits the training data again in
- (proper) training data and
- validation data.
- The validation data figures as test data during the training process.

Cross Validation

Instead of a single split into
training data, (validation data,) and test data
K-fold cross validation splits the data in K parts (of roughly equal size)

$$
\mathcal{D}=\mathcal{D}_{1} \cup \mathcal{D}_{2} \cup \cdots \cup \mathcal{D}_{K}, \quad \mathcal{D}_{k} \text { pairwise disjoint }
$$

and averages performance over K learning problems

$$
\mathcal{D}_{\text {train }}^{(k)}:=\mathcal{D} \backslash \mathcal{D}_{k}, \quad \mathcal{D}_{\text {test }}^{(k)}:=\mathcal{D}_{k}, \quad k=1, \ldots, K
$$

Common is 5 - and 10 -fold cross validation.
N-fold cross validation is also known as leave one out.

Cross Validation

How many folds to use in K-fold cross validation?
$K=N$ / leave one out:

- approximately unbiased for the true prediction error.
- high variance as the N training sets are very similar.
- in general computationally costly as N different models have to be learnt.
$K=5:$
- lower variance.
- bias could be a problem, due to smaller training set size the prediction error could be overestimated.

Summary

- The problem of underfitting can be overcome by using more complex models, e.g., having
- variable interactions as in polynomial models.
- The problem of overfitting can be overcome by
- model selection / variable selection as well as by
- (parameter) shrinkage.
- Applying L2-regularization to Linear and Logistic Regression requires only few changes in the learning algorithms.
- Shrinkage introduces a hyperparameter λ that cannot be learned by direct loss minimization.
- Estimating the best hyperparameters can be considered as a meta-learning problem. They can be estimated e.g. by
- Grid Search or
- Random Search - both using validation data.

Further Readings

- [James et al., 2013, chapter 3], [Murphy, 2012, chapter 7], [Hastie et al., 2005, chapter 3].

References

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of Statistical Learning: Data Mining, Inference and Prediction, volume 27. Springer, 2005.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning. Springer, 2013. Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

